
CS224 – Jack Code Generation

Purpose: The last phase of our Jack compiler is actually generating VM code. We will
examine some code templates that will help you do that.

Knowledge: This activity will help you become familiar with the following content knowl-
edge:

• What VM code needs to be generated for various scenarios

Activity: With your group perform the following tasks and answer the questions. You will
be reporting your answers back to the class in 60 minutes.

1. We will start by looking at code generation for expressions:

Complete the logic for generating VM code from a parse tree exp .

The codeWrite(exp) algorithm:
if exp is a constant n then output push n

if exp is a variable v then output
if exp is op(exp1) then
if exp is (exp1 op exp2) then
if exp is f(exp1, ... expn) then

1



2. Next we will look at program flow:

Give the VM code for a while loop.

2



3. Next we will consider how to handle objects. Consider the following classes:

After compilation the RAM might look like this:

So what tasks must the generated code perform when constructing an object like
x = new Classname(...) ?

3



4. What would be the VM code for the assignment statement im = im * c?
Hint: We would look up the two variables in the symbol table and im would be in
segment this with and index of 1 and c would be in segment arg with an index of 0

4



5. Next we will consider accessing the fields in an object. Suppose we have an ob-
ject named b of type Ball. A Ball has x,y coordinates, a radius, and a color.

If we execute b.radius = 17, we would set pointer[0] to the address of the ob-
ject b. This would cause the this segment to align with the object b so that we can
access the field.

Suppose we have a function in which b and r are passed in as the first two argu-
ments. Give the VM code for b.radius = r

Hint: Get b’s address and set pointer[0] to that value. Store r’s value in b’s third
field which is now the third location in the this segment.

5



6. We will next look at method calls. A method call x.mult(5) can also be viewed as
mult(x,5) since the first parameter is the object itself.

So what would the VM code for this method call look like?

6



7. We can use the memory.alloc(n) library function which allocates n memory locations
and returns the address of the start of this block. Consider creating an array:

So what would the VM code be for bar = new int(10) ?

8. To access an array element by its index we can use the that segment. If we put the
address of that element into pointer[1] then it will align the memory address with
the that segment.

Give the VM code for bar[k]=19

7



9. We will now write the VM code for method declarations. Consider the following ex-
ample:

The VM code uses function and return to define a method. All methods return
a value and can be 0 if no value is actually needed to be returned. The function

takes the name for the function and the number of local variables as parameters.
To call a function we first push the arguments and then use call with the name of
the function and the number of parameters for that function as parameters for the call.

Complete the VM code below:

function BankAccount.commission 0

// Code omitted

function BankAccount.transfer 3

push argument 0

pop pointer 0

<Your code here>

// More code

push 0

return

8



10. We will examine the VM code for expressions. Explain why the following VM code
represents each of these types of expressions:

(a) Assuming you have the varSeg and varIndex from the symbol table, explain the
VM code for the expression varName

push varSeg varIndex

(b) Assuming you have the className of the file being compiled and you can re-
cursively create the VM code for the expression list, explain the VM code for
subName(expressionList)

Hint: The arg0 is this

push pointer 0

<compile expressionList>

call className.subName <nArgs>

What we would do in CompilationEngine.java to get the number of arguments
used in the last statment?

(c) Assuming you have the varSeg, varIndex, and varType in the symbol table, and
can recursively create the VM code for the expression list, explain the VM code
for varName.methodName(expressionList)
Hint: The arg0 is the object being acted upon. Also the varType is needed to
know what class the method is defined in.

push varSeg varIndex

<compile expressionList>

call varType.methodName <nArgs>

(d) Explain the VM code for className.methodName(expressionList)

<compile expressionList>

call className.methodName <nArgs>

How would we distinguish that we have a className rather than a varName when
we are compiling this code?
Where in the CompilationEngine.java code would we get the className?

(e) Assuming you have the varSeg and varIndex from the symbol table, explain the
VM code for varName[expression]
Hint: pointer[1] aligns the that segment to the array.

<compile expression>

push varSeg varIndex

add

pop pointer 1

push that 0

9



11. Look at the CompilationEngine.java code that I gave in the Parser starter code and
answer the following questions.

(a) Not all of our parser methods generate VM code. Which methods do not?

(b) We need to generate unique labels in compileIfStatement and compileWhileStatement.
How can we generate these unique label names?

(c) Unique code needs to be generated at the beginning of compileSubroutineBody
if we are compiling a constructor or compiling a method.

i. What will the unique code for constructors do?

ii. What will the unique code for methods do?

iii. How would compileSubroutineBody determine the type value for the sub-
routine. Where is that information generated?

(d) The code generation for a string constant in compileTerm involves two steps.
First you have to call String.new to create a string object. Then you need
to repeatedly call String.appendChar to add all the characters to that string
object. What would be the parameter to the String.new call?

(e) What code would be generated for each of the terms: true, false, null, this ?

It looks like you are ready for the code generation project now!!

10


