
CS224 – Grammars

Purpose: The syntax of a programming language can be described with a grammar and
a particular string can be ”parsed” using that grammar to see if it is syntactically correct
and see the pieces that make up that syntax.

Knowledge: This activity will help you become familiar with the following content knowl-
edge:

• How we describe grammars

• How to diagram the parse of a string with a parse tree.

• How a parse tree can describe operator precedence and associativity

• How some grammars can be ambiguous

Activity: With your group perform the following tasks and answer the questions. You will
be reporting your answers back to the class in 1 hour.

1. A grammar can describe how tokens can be organized in legal strings. Each grammar
is made up of ”non-terminals” which can represent a node in the parse tree and ”ter-
minals” which are leaves in the parse tree. The following is a grammar representing
an expression. In this grammar there is one non-terminal <exp> and the terminals are
a, b, c, +, *, (, and). Choices in the grammar are indicated by |. So the following
grammar indicates that a legal expression can be the sum of two expressions or, the
product of two expressions, or an expression enclosed in parentheses. Finally an ex-
pression can simply be a, or b or c.

<exp> ::= <exp> + <exp> | <exp> * <exp> | (<exp>) | a | b | c

A parse of the expression b * c can be viewed as the following parse tree by us-
ing the rules of the grammar, first substituting <exp> with the rule <exp> * <exp>

and then substituting the first <exp> with the rule b and then substituting the second
<exp> with the rule c :

1

Draw the parse trees for each of the following:

a * b * c

(a + b)

(a + (b))

2. Consider the following examples of Java declarations:

float a;

boolean a, b, c;

int a=1, b, c=1+2;

An incomplete grammar for Java declarations is given below:

<var-dec> ::= <type-name> <declarator-list> ;

<type-name> ::= boolean | byte | short | int | long | char | float | double

<declarator> ::= <variable-name> | <variable-name> = <expr>

Complete this grammar by giving the definition of the grammar for <declarator-list>
Hint: Use <declarator> and recursion.

3. Going back to the expression grammar,
<exp> ::= <exp> + <exp> | <exp> * <exp> | (<exp>) | a | b | c

This is a parse tree for a + b * c:

Give another parse tree for a + b * c using this grammar.

Which parse tree correctly represents the precedence of the operators? Why?

2

4. It would be great if the grammar forced the correct parse tree. Take a look at the
modified grammar and give the parse tree for a + b * c:

<exp> ::= <exp> + <exp> | <term>

<term> ::= <term> * <term> | (<exp>) | a | b | c

It forces the correct precedence! But all is not well. Give two parse trees for a + b + c

with this grammar. Which one do you prefer? Would it make a difference if we replace
the operator with division?

5. We would like the grammar to also correctly give the ”associativity” of the operators.
Performing (a + b) + c would be left-associativity, whereas a + (b + c) would be
right-associativity.

Take a look at another modification to the grammar and verify that it will give the
normal (left-associative) meaning for both multiplication and addition:

<exp> ::= <exp> + <term> | <term>

<term> ::= <term> * <factor> | factor

<factor> ::= (<exp>) | a | b | c

6. Starting with the grammar above, add a left-associative & operator at lower precedence
than any of the others. Then add a right-associative ** operator at higher precedence
than any of the others.

Verify your grammar is correct by drawing the parse trees for :

(a) a & b & c

(b) a & b + c

(c) a ** b ** c + d

7. A well known problem with grammars for programming languages is called the ”dan-
gling else” problem. Consider the following grammar:

<stmt> ::= <if-stmt> | s1 | s2

<if-stmt> ::= if <expr> then <stmt> else <stmt> | if <expr> then <stmt>

<expr> ::= e1 | e2

Draw two different parse trees with this grammar for:

if e1 then if e2 then s1 else s2

It may not be clear which one the programmer intends. How can we solve this prob-
lem?

3

