
CS220 – Project 5: Computer Architecture

Background

In previous projects we’ve built the computer’s basic processing and storage devices (ALU
and RAM, respectively). In this project we will put everything together, yielding the com-
plete Hack Hardware Platform. The result will be a general-purpose computer that can run
any program that you fancy.

Objective

Complete the construction of the Hack CPU and computer platform, leading up to the
top-most Computer chip.

Chips

Criteria for Success

The computer platform that you build should be capable of executing programs written in
the Hack machine language, specified in Chapter 4. Demonstrate this capability by having
your Computer chip run the three test programs given below.

Testing

Testing the Memory and CPU chips: It’s important to unit-test these chips before
proceeding to build the overall Computer chip. Use the the provided test scripts and com-
pare files.

Testing the Computer chip: A natural way to test the overall Computer chip implemen-
tation is to have it execute some sample programs written in the Hack machine language.
In order to perform such a test, one can write a test script that (i) loads the Computer.hdl

chip description into the supplied Hardware Simulator, (ii) loads a machine-level program
from an external .hack file into the ROM chip-part of the loaded Computer.hdl chip, and
then (iii) runs the clock enough cycles to execute the loaded instructions. We supply all the
files necessary to run three such tests, as follows:

1



Before testing your Computer chip on any one of the above programs, read the relevant
.tst file and be sure to understand the instructions given to the simulator. Appendix B of
the book may be a useful reference here.

Resources

The relevant reading for this project are Chapter 5, Appendix A, and Appendix B (as a
reference). Specifically, all the chips described in Chapter 5 should be implemented in the
Hardware Description Language (HDL) specified in Appendix A.

The resources that you need for this project are the supplied Hardware Simulator and
the files listed above. The project files are available in a ZIP archive file available on the
course web site.

Implementation Tips

Complete the computer’s construction in the following order:

1. Memory: This chip includes three chip-parts: RAM16K, Screen, and Keyboard. The
Screen and the Keyboard are available as built-in chips, and thus there is no need to
implement them. Although the RAM16K chip was built in Project 3, we recommend
using its built-in version, as it provides a debugging-friendly GUI.

2. CPU: This chip can be constructed according to the proposed CPU implementation
given in Figure 5.9 of Chapter 5, using the ALU and register chips built in Projects 2
and 3, respectively. We recommend though using built-in chip-parts instead, in par-
ticular ARegister and DRegister. The built-in versions of these two chips have exactly
the same interface and functionality as those of the Register chip specified in Chapter
3; however, they feature GUI side-effects that come handy for testing purposes.

In principle, your CPU implementation may include internal chips of your own spec-
ification, i.e. chips not mentioned in Figure 5.9 of Chapter 5. However, this is not
recommended, and will most likely yield a less efficient CPU design. If you choose to
create new chips not mentioned in the book, be sure to document and unit-test them
carefully before you plug them into the architecture.

3. Instruction memory: Use the built-in ROM32K chip.

2



4. Computer: The top-most Computer chip can be constructed according to the pro-
posed implementation shown in Figure 5.10 of Chapter 5.

Tools

All the chips mentioned in this project, including the topmost Computer chip, can be
implemented and tested using the supplied Hardware Simulator. Here is a screen shot of
testing the Rect.hack program on a Computer chip implementation.

The Rect program illustrated above draws a rectangle of width 16 pixels and length
RAM[0] at the top-left of the screen. Now here is an interesting observation: normally, when
you run a program on some computer, and you don’t get the desired result, you conclude
that the program is buggy. In our case though, the supplied Rect program is bug-free. Thus,
if running this program yields unexpected results, it means that the computer platform on
which it runs (Computer.hdl and/or some of its lower-level chip parts) is buggy. If that is
the case, you have to debug your chips.

3



Submission and Assessment

If you can’t finish the project on time, submit what you’ve managed to do, and relax. All
the projects in this course are highly modular, with incremental test files. Each hardware
project consists of many chip modules (*.hdl programs), and each software project consists
of many software modules (classes and methods). It is best to treat each project as a
modular problem set, and try to work out as many problems as you can. You will get
partial credit for partial work.

What if your chip or program is not working? It’s not the end of the world. Hand in
whatever you did, and explain what works and what doesn’t in a README file. If you want,
you can also supply test files that you developed, to demonstrate working and non-working
parts of your project. Instead of trying to hide the problem, be explicit and clear about it.
You will get partial credit for your work.

Submit all your HDL files as a single ZIP archive.

4


