
Currying and Partial Application

Have you been wondering why the type of a function like plus given below is Int -> Int -> Int

rather than something like (Int,Int) -> Int?.

plus :: Int -> Int -> Int

plus x y = x + y

Well, the expression plus 3 4 is really equivalent to ((plus 3) 4). The result of plus 3 is
then applied to the argument 4. This means that the value of plus 3); must also be a function! Indeed, we could define a new function to be the result of \verb;plus
3); as follows:

plusThree :: Int -> Int

plusThree = plus 3

We would get the result that we expect when using this new function.

> plusThree 4

7

This method of applying functions to one argument at a time is called currying (after
Haskell B. Curry). Curried functions can be applied to one argument only, giving another
function. Sometimes these new functions can be useful in their own right. Consider the
following function:

twice :: (Int -> Int) -> Int -> Int

twice f x = f (f x)

The function twice takes as arguments a function and an integer and applies the function
twice to the integer argument. We could use the function resulting in using only the first
argument to get the following new functions:

add2 = twice (+1)

quad = twice square

What would be the result of the expressions add2 3 and quad 2?

1


