
Linear Recursion

We will now consider functions that generate computation of varying size depending upon
the input. The technique use to achieve this is called recursion. The algorithm breaks up
the task into smaller instances of the original task and then combines the results in some way.

We will illustrate this with the task of making a paper chain. Consider of line of stu-
dents and pile of paper strips and a stapler:

Make a chain of length n:

1. If n = 1

(a) Bend a strip into a loop and join the ends

(b) Deliver your chain of length 1 to your customer

2. Otherwise

(a) Pick up a strip

(b) As the person next to you to make you a chain of length n− 1

(c) When you get your chain, slip your strip through one end and join the ends,
adding another link

(d) Deliver your chain of length n to your customer

Notice that the problem of making a chain was broken up into two cases: a base case of
length 1 and a recursive case where we used the same algorithm to solve a smaller instance
of the same problem (making a chain of length n− 1) and then did some extra work on the
result (linking another strip) to create our chain. This strategy is called linearrecursion.
It is time to look at examples in Haskell.

Suppose we want to compute the number of different ordering of a deck of cards. We
would have 52 possibilities for the choice of the first card, 51 possibilities for the second
card, 50 possibilities for the third card, etc. Therefore the number of possible orderings
would be 52∗51∗50∗ ...∗1 or 52 factorial. Here is a Haskell function to compute n factorial:

fact :: Int -> Int

fact n = if n==0

then 1

else n * fact (n - 1)

Just as with the chain example, the definition is broken up into a base case, where n is 0,
and a recursive case which uses a smaller instance of the problem, fact(n− 1). We can use
the substitution model to examine the computation of fact 4:

1



Expression Substitution explanation
fact 4 substitute into the body of fact
4 ∗ fact 3 substitute for fact 3
4 ∗ (3 ∗ fact 2) substitute for fact 2
4 ∗ (3 ∗ (2 ∗ fact 1)) substitute for fact 1
4 ∗ (3 ∗ (2 ∗ (1 ∗ fact 0))) substitute for fact 0
4 ∗ (3 ∗ (2 ∗ (1 ∗ 1))) multiply
4 ∗ (3 ∗ (2 ∗ 1)) multiply
4 ∗ (3 ∗ 2) multiply
4 ∗ 6 multiply
24

Observe that the computation is composed of a winding phase where the expressions are
getting larger and larger with each recursive substitution, and an unwinding phase where
the results are being combined.

Let’s look at an example that uses Words. The following function reverses the letters
in a word:

revWord :: Language -> Language

revWord w = if (empty w)

then w

else (lastItem w) +++ revWord (butLast w)

Use the substitution model to look at the computation revWord (word "cat").

Try writing linear recursive functions for the following:

-- compute the base value raised to the power of the exponent

power :: Int -> Int -> Int

power base exp = ...

-- compute the number of letters in a word

length :: Language -> Int

length w = ...

2


