
Monads

Before we get to Monads, first a brief word about type classes. We saw in the example of
the data type Set a that when we implemented this type with binary search trees we had
to be sure that the general type a allowed the ordering operations (greater and less tests).
To do this we specified Ord a => Set a. A type class, like Ord is just a collection of types
that satisfy certain operations, in this case ”<”, ”=”, and ”>”.

Monad is a type class where all types in the class must implement the operations return

and >>= (called the bind operator). What are these operations? Well, they can do different
things for different monadic types, although they must satisfy some rules. It is easier to
explain them by giving some examples.

Let us start with the monadic type IO a. An expression of type IO a is used to denote an
action. In a functional language like Haskell, how do we implement an operation getChar

which returns the latest character that the user has typed, or putChar c which prints the
character c on the screen? The function getChar can not have the type getChar :: Char

because this says that getChar is a function with no arguments so must be constant. We
have to somehow specify that getChar has a side effect of interacting with the user. Simi-
larly with putChar.

So the type IO a comes to the rescue with:

getChar :: IO Char

putChar :: Char -> IO ()

We can now define the operation

return :: a -> IO a

The command return 42 returns the value 42 without consuming any input.

The operation >>= is defined as

(>>=) :: IO a -> (a -> IO b) -> IO b

The expression p >>= q first does p, returning a value x of type a, then does q x, returning
a value y of type b. We will demonstrate this with the function echo in which the user
inputs a character and then this character is echoed to the screen with putChar:

echo :: IO()

echo = getChar >>= putChar

Notice that the result of getChar is sent in as the argument to putChar which then results
in something of type IO(). The type IO() means that an IO action is being perform that
does not generate a value.

Now we can use these operations to write a function readn which reads in n characters
typed by the user:

1



readn :: Int -> IO String

readn n = if n==0

then return []

else getChar >>= q where

q c = readn (n-1) >>= r where

r cs = return (c : cs)

To read n characters we read a single character, which is passed into the function q. The
function q reads n-1 characters and passes the results to function r, which returns the entire
string. This notation is rather clumsy so there is a simpler notation provided in Haskell.
The do notation cleans up the code, but be aware this is just syntactic sugar for the code
above.

readn :: Int -> IO String

readn n = if n==0

then return []

else do

c <- getChar

cs <- readn (n-1)

return (c : cs)

The operations of return and >>= are used elegantly to deal with the side effects of IO.

Now let us turn to another example where monads are useful. We wish to generate ran-
dom numbers (or really pseudo-random numbers) by starting with a seed value that gets
scrambled in some way to produce another number. This process can then be repeated to
generate the next random number. Here is one way to ”scramble” the seed.

type Seed = Int

randomNext :: Seed -> Seed

randomNext rand = if newRand > 0

then newRand

else

newRand + 2147483647

where

newRand = 16807 * lo - 2836 * hi

(hi,lo) = rand ‘divMod‘ 127773

Now we can implement the roll of a single die:

rollDie :: Seed -> (Int,Seed)

rollDie seed = ((seed ‘mod‘ 6) + 1, randomNext seed)

We have to return both the result of the roll and the new seed to be used in the next roll.
This is called a state transformer since it takes an initial state (the seed) and transforms it
to a new state along with a result.

What if we want to sum the pips on a roll of two dice:

2



sumTwoDice :: Seed -> (Int,Seed)

sumTwoDice seed0 =

let

(die1, seed1) = rollDie seed0

(die2, seed2) = rollDie seed1

in

(die1+die2, seed2)

Notice that we had to thread the state (the seed) through the two rolls. The initial seed is
used for the first roll, whose resulting seed in used for the second roll, whose resulting seed
is returned with the sum. Instead of doing this, we could use >>= to thread the state for us.

We can define a type Random a which can be viewed as a value of type a which varies
randomly. We can make this a monadic type as follows:

newtype Random a = MakeRandom(Seed -> (a, Seed))

apply :: Random a -> Seed -> (a,Seed)

apply (MakeRandom f) seed = f seed

instance Monad Random where

--return :: a -> Random a

return x = MakeRandom(\seed -> (x,seed))

--(>>=) :: Random a -> (a -> Random b) -> Random b

m >>= g = MakeRandom(\seed0 ->

let

(result1,seed1) = apply m seed0

(result2, seed2) = apply (g result1) seed1

in (result2,seed2))

We have simply generalized the work that we did in sumTwoDice to define the bind operator
and made the new type Random a a monadic type. Now we can redefine sumTwoDice to
make use of the return and >>= operators.

rollDie :: Random Int

rollDie = MakeRandom(\seed -> ((seed ‘mod‘ 6) + 1, randomNext seed))

sumTwoDice :: Random Int

sumTwoDice = rollDie >>= (\die1-> rollDie >>= (\die2 -> return (die1+die2)))

This will be much easier to read if we use the do notation:

sumTwoDice :: Random Int

sumTwoDice = do

die1 <- rollDie

die2 <- rollDie

return (die1 + die2)

3



We can now test this out with an arbitrary seed

> apply sumTwoDice 123456789

(8,2053676357)

4


