
Abstract Data Types - Bags (Multisets)

A bag, or multiset, is a collection of elements where the order is immaterial but, unlike a
set, duplicate elements do matter. For example, [1,2,2,3] does not equal [1,2,3] but [1,2,2,3]
does equal [2,1,2,3].

We define the operations on bags to include:

Function Explanation
makeBag :: [a] -> Bag a convert a list to a bag.
isEmpty :: Bag a -> Bool determines if a bag is empty
union :: Bag a -> Bag a -> Bag a union of two bags
minBag :: Bag a -> a returns the minimum value in the bag
deleteMin :: Bag a -> Bag a removes one occurrence of the min value in the bag

We could implement bags using a sorted lists but a more efficient representation uses a
data structure called a heap. A heap is a binary tree such that the root is the smallest value
in the tree and the two branches are also heaps. We will extend this a bit to make sure that
the number of nodes in the left heap is at least as large as the number of nodes in the right
heap. The following is an example of a heap.

The following code implements the Bag ADT with a heap.

module Bag (Bag, isEmpty, minBag, union, deleteMin, makeBag) where

data Heap a = Null | Branch Int a (Heap a) (Heap a) deriving Show

type Bag a = Heap a

isEmpty :: Bag a -> Bool

isEmpty Null = True

isEmpty (Branch n x left right) = False

minBag :: Bag a -> a

minBag (Branch n x left right) = x

1



union :: (Ord a) => Bag a -> Bag a -> Bag a

union Null y = y

union x Null = x

union (Branch m u l1 r1) (Branch n x l2 r2) =

if u <= x then

branch u l1 (union r1 (Branch n x l2 r2))

else

branch x l2 (union (Branch m u l1 r1) r2)

-- branch takes an element and two subtrees and creates a Heap with the

-- additional property that the left subtree is at least as big as the right

-- subtree

branch :: a -> Bag a -> Bag a -> Bag a

branch x left right =

if (size left) < (size right) then

Branch newSize x right left

else

Branch newSize x left right

where newSize = (size left) + (size right) + 1

size :: Bag a -> Int

size Null = 0

size (Branch n x left right) = n

deleteMin :: (Ord a) => Bag a -> Bag a

deleteMin (Branch n x left right) = union left right

makeBag :: (Ord a) => [a] -> Bag a

makeBag xs = fst(makeTwo (length xs) xs)

makeTwo :: (Ord a) => Int -> [a] -> (Heap a, [a])

makeTwo 0 xs = (Null,xs)

makeTwo 1 (x:xs) = (branch x Null Null, xs)

makeTwo n xs = (union x y, zs) where

(x, ys) = makeTwo m xs

(y, zs) = makeTwo (n- m) ys

m = n ‘div‘ 2

What is the efficiency for each of the operations?

2


