
Abstract Data Types - Stack and Queue

Two important abstract data types in computer science are stacks and queues. They show
up all over the place.

A Stack is a linear data structure which is LIFO (last in first out). Think of a stack
of plates. When you add a plate to the stack, you will place it on the top of the stack.
When you remove a plate from the stack, you will remove the plate at the top – the last
one that was added. The operations for a stack are usually called push to add an item and
pop to remove an item.

A Queue is FIFO (first in first out). Think of a queue of people waiting at a store check-out.
The first person who entered the queue will be the first one at the check-out, therefore the
first to leave the queue.

We define the operations on queues which include:

Function Explanation
empty :: Queue a gives an empty queue
isEmpty :: Queue a -> Bool determines if a queue is empty
front :: Queue a -> a gives the item that is at the front of the queue
enqueue :: a -> Queue a -> Queue a adds an item to the rear of the queue
dequeue :: Queue a -> Queue a removes an item from the front of the queue

An obvious way to represent a queue is with a list. Here is a module with this repre-
sentation:

module Queue (Queue, empty, isEmpty, front, enqueue, dequeue) where

newtype Queue a = MakeQ([a])

empty :: Queue a

empty = MakeQ([])

isEmpty :: Queue a -> Bool

isEmpty (MakeQ(q)) = null q

front :: Queue a -> a

front (MakeQ(x:q)) = x

enqueue :: a -> Queue a -> Queue a

enqueue x (MakeQ(q)) = MakeQ(q ++ [x])

dequeue :: Queue a -> Queue a

dequeue (MakeQ(x:q)) = MakeQ(q)

1



What is the efficiency for each of the operations? Let’s try another representation and see
if we can do better.

The problem with lists is that we have easy access to the front but to access the rear
we have to traverse the entire list. So to make access to the rear easier, we will split up
the queue into two lists, front and rear. The rear list holds its elements in reverse order.
For example, a queue containing items [1,2,3,4,5,6] might look like front=[1,2,3] and rear =
[6,5,4]. Now, adding an element to the rear of the queue is easy, resulting in front=[1,2,3]
and rear =[7,6,5,4].

Removing an item from the front of the queue is easy too. Just remove the first item
from the front list: front=[2,3] and rear=[7,6,5,4].

That all works fine until you dequeue all the elements from the front list. Then what
can you do? Well, you can reverse the rear list and make it the front list. So after removing
two more items from our example we would get front=[4,5,6,7] and rear=[].

Here is our second representation with the requirement that the rear list will never have
items when the front list is empty:

module Queue (Queue, empty, isEmpty, front, enqueue, dequeue)where

newtype Queue a = MakeQ([a],[a])

empty :: Queue a

empty = MakeQ([],[])

isEmpty :: Queue a -> Bool

isEmpty (MakeQ(xs,ys)) = null xs

front :: Queue a -> a

front (MakeQ(x:xs,ys)) = x

enqueue :: a -> Queue a -> Queue a

enqueue x (MakeQ(xs,ys)) = makeValid (xs, x:ys)

dequeue :: Queue a -> Queue a

dequeue (MakeQ(x:xs,ys)) = makeValid (xs,ys)

makeValid :: ([a],[a]) -> Queue a

makeValid (xs,ys) =

if null xs then MakeQ(reverse ys,[])

else MakeQ(xs,ys)

Notice that the makeValid function enforces our requirement so that when the front list
becomes empty, we reverse the rear list and make it the front. All the operations are O(1)
except the reverse function which is O(n). Have we gained anything with this new repre-

2



sentation?

Well we have if we talk about amortised cost. This is the average cost over a worst case
sequence of operations. Consider the behavior of this queue over time as we add and then
remove some items. Say we add N items and then remove N items. At the point when the
front list is empty and we need to reverse the rear list we have already performed N steps,
over time. The reversing of the list takes N steps. So when you average the cost over time
we get O(1) amortised cost, even though an individual step took O(N) steps.

There is another implementation of a queue which takes O(1) true cost for all operations,
but it is beyond the scope of this course.

3


