
Abstract Data Type - Sets

Often times it is not clear how to represent the values of a data type. There may be mul-
tiple representations with associated pros and cons with regard to efficiency. The aim of
abstract data types is to separate the data types from the representation so that a program-
mer using that data can work with it in a representation-independent way. This not only
frees up the programmer from having to deal with unnecessary detail and complexity, it
allows the representation to be changed without affecting how the data will be used. This
representation-independent way of representing data is call data abstraction and the data is
referred as an abstract data type or ADT.

We will illustrate abstract data types with the data type Set. Sets appear throughout
mathematics and computer science and can be represented in numerous ways. Suppose a
set contains elements of some type a. (Haskell allows us to leave the type unspecified when
we define the type Set.) We start by defining the operations on sets which include:

Function Explanation
empty :: Set a gives an empty set
isEmpty :: Set a -> Bool determines if a set is empty
member :: Set a -> a -> Bool determines whether a value is contained in a set
insert :: a -> Set a -> Set a adds a value to a set
delete :: a -> Set a -> Set a deletes a value to a set

A simple representation of a set could be an unordered list of unique values. We can
easily write the operations above but we would like to package them up so that a user of
this type doesn’t have to worry about the details. We will do this inside a module and
export the operations. We will also use the newtype declaration to hide the construction of
the data as a list.

module Set (Set, empty, isEmpty, member, insert, delete) where

newtype Set a = MakeSet([a])

empty :: Set a

empty = MakeSet([])

isEmpty :: Set a -> Bool

isEmpty (MakeSet x) = null x

member :: (Eq a) => Set a -> a -> Bool

member (MakeSet []) y = False

member (MakeSet(x : xs)) y = if (x == y) then True

else member (MakeSet xs) y

insert :: (Eq a) => a -> Set a -> Set a

insert x (MakeSet y) = if not (member(MakeSet y) x)then MakeSet (x : y)

else MakeSet y

1



Note: In member and insert we needed to specify that type a must have an equality test
available.

What is the efficiency for each of the operations?

A user can now import this module and use the sets. For example,

module Example8 where

import Set

s1 = insert 3 (insert 5 (insert 1 empty))

s2 = insert 5 (insert 2 empty)

Here we have created two sets without regard to their implementation.

For the member function we had to search the list to find the value in question. Is there
a way to make this search more efficient? We could represent the data as a tree. We can
order the elements in the tree such that everything to the right of the root is smaller than
the root, and everything to the left is larger. The two subtrees can also have this property.
Such a tree is called a binary search tree. Here is an example:

Now when we do a search, the time it takes will be, at worst, the depth of the tree. If a tree
has n elements and is balanced, what would be the depth of the tree?

Here is a representation of sets using binary search trees:

module Set (Set, empty, isEmpty, member, insert, delete) where

data Bst a = Null | Branch a (Bst a) (Bst a)

type Set a = Bst a

empty :: Set a

empty = Null

isEmpty :: Set a -> Bool

isEmpty Null = True

isEmpty (Branch x t1 t2) = False

2



member :: (Ord a) => Set a -> a -> Bool

member Null y = False

member (Branch x t1 t2) y = if (y < x) then

member t1 y

else if (x == y) then

True

else member t2 y

insert :: (Ord a) => a -> Set a -> Set a

insert x Null = Branch x Null Null

insert x (Branch y t1 t2) = if (x < y) then

Branch y (insert x t1) t2

else if (x == y) then

Branch y t1 t2

else

Branch y t1 (insert x t2)

delete :: (Ord a) => a -> Set a -> Set a

delete x Null = Null

delete x (Branch y t1 t2) = if (x < y) then

Branch y (delete x t1) t2

else if (x == y) then

join t1 t2

else

Branch y t1 (delete x t2)

join :: Set a -> Set a -> Set a

join t1 t2 = if isEmpty t2 then t1

else Branch y t1 t3

where (y,t3) = splitTree t2

splitTree :: Set a -> (a, Set a)

splitTree (Branch y t1 t2) = if isEmpty t1 then (y,t2)

else (u, Branch y t3 t2)

where (u,t3) = splitTree t1

Note that we needed to specify that we can test order relations on type a. We also wrote
auxiliary functions to perform the delete but these functions are not exported from the
module. They are therefore hidden from the user.

The user would use this new representation in the identical way as before! This is the
beauty of abstraction.

What is the efficiency of each of the operations with the binary search tree representation?

3


