
Trees

Not all data can or should be expressed in a linear way (as in a list). A very com-
mon data type which represents data hierarchically is a tree. For example, consider the
arithmetic expression 1+2*(3-5). We can think of this expression as an expression tree;

We can represent this data in Haskell as:

data ExprTree = Leaf Float | Add ExprTree ExprTree | Sub ExprTree ExprTree |

Mul ExprTree ExprTree | Div ExprTree ExprTree

deriving Show

The internal nodes of the tree are represented as either Add, Sub, Mul or Div with two
ExprTree values for the two branches. The leaves of the tree are represented with the Leaf

and a floating point numeric value. The expression tree above would be written as:

(Add (Leaf 1) (Mul (Leaf 2) (Sub (Leaf 3) (Leaf 5))))

Given an expression tree, we might want to compute its value:

evaluate :: ExprTree -> Float

evaluate (Leaf x) = x

evaluate (Add e1 e2) = evaluate e1 + evaluate e2

evaluate (Sub e1 e2) = evaluate e1 - evaluate e2

evaluate (Mul e1 e2) = evaluate e1 * evaluate e2

evaluate (Div e1 e2) = evaluate e1 / evaluate e2

Notice that the function evaluate use a type of recursion called tree recursion. For each
node, we recursively call the function on each of the two branches and combine the result.
The base case of the recursion is when we get to a leaf.

The result of using evaluate would look like:

> evaluate (Add (Leaf 1) (Mul (Leaf 2) (Sub (Leaf 3) (Leaf 5))))

-3

1

Let’s look at some more general trees and some operations upon them. We will have a tree
where each node contains an Int value.

data IntTree = Leaf Int | Branch Int IntTree IntTree deriving Show

We can perform an operation to each of the elements in the tree:

mapTree :: (Int->Int) -> IntTree -> IntTree

mapTree f (Leaf x) = Leaf (f x)

mapTree f (Branch x t1 t2) = Branch (f x) (mapTree f t1) (mapTree f t2)

> mapTree (*2) (Branch 1 (Leaf 2) (Branch 3 (Leaf 4) (Leaf 5)))

Branch 2 (Leaf 4) (Branch 6 (Leaf 8) (Leaf 10))

We can count the number of leaves in the tree:

numLeaves :: IntTree -> Int

numLeaves (Leaf x) = 1

numLeaves (Branch x t1 t2) = numLeaves t1 + numLeaves t2

Notice the tree recursion in each of these examples.

2

