
Expressions, Functions, and the Substitution Model

In Haskell, computation is done on expressions. You have seen expressions before in Java.
Here are some examples:

3 + 4

abs -9.0

sqrt (3 + 6)

What makes something an expression? An expression has a value and that value has some
type. Look at the values and types of the previous expressions:

3 + 4 => 7 : Int

abs -9.0 => 9.0 : Float

sqrt (3 + 6) => 3.0 : Float

We can define functions which takes parameters of some type and return the value of an
expression that uses the parameters. We usually declare the function by specifying the
types of the parameters as well as the type of the returned value. Consider the function
square below. It takes one parameter x, which is of type Float and returns the value of the
expression x ∗ x which is also a Float.

square :: Float -> Float

square x = x * x

The following function hypotenuse takes two parameters a and b and returns the expression
that returns the square root of the sum of the squares of the parameters. We will discuss
later why the types are declared in this strange way. but the last Float refers to the return
value and everything before that refers to the types of the parameters. Observe that we are
using the function square that we defined previously.

hypotenuse :: Float -> Float -> Float

hypotenuse a b = sqrt (square a + square b)

Now that we have declared some functions, suppose that we wish to use our function
hypotenuse to compute the value of the expression:

hypotenuse (3 + 2) (3 * 4)

To figure out by hand how the result of this expression, we would simply substitute the
expression definition for the function hypotenuse and replace its parameters with the values
of its argument expressions, in this case (3+2) for a and (3*4) for b as follows:

1



Expression Substitution explanation
hypotenuse(3 + 2)(3 ∗ 4) substitute into the body of hypotenuse
sqrt(square(3 + 2) + square(3 ∗ 4)) evaluate the arguments of square
sqrt(square5 + square12) substitute in the body of square
sqrt(5 ∗ 5 + 12 ∗ 12) evaluate the argument of sqrt
sqrt(169) evaluate sqrt
13.0

We will find this substitution model quite useful as expressions get more complex.

Application: Manipulating Words and Sentences

We will consider an application of manipulating words and sentences. We will give both
words and sentences the type Language and have two functions word and sent which take a
String and convert it to type Language. We have lots of functions we can use to manipulate
this type:

Function Explanation
firstItem :: Language -> Language gives the first letter or word of a word or sentence
lastItem :: Language -> Language gives the last letter or word of a word or sentence
butF irst :: Language -> Language gives everything BUT the first letter or word of

the word or sentence
butLast :: Language -> Language gives everything BUT the last letter or word of

the word or sentence
item :: Int -> Language -> Language gives the nth letter or word from the word or

sentence
count :: Language -> Int gives the number of letters or words in the word

or sentence
(+++) :: Language -> Language -> Language concatenate two Language objects together
empty :: Language -> Bool determines if a word or sentence is empty
member :: Language -> Language -> Bool determines if a letter or word is contained in a

word or sentence
wordToSent :: Language -> Language converts a word to a sentence of one word
sentToWord :: Language -> Language converts a sentence to a single word

Consider the following example expressions with their values and types:

word "computer" +++ word "s" => computers : Language

sent "the answer is" +++ word "42" => [the answer is 42] : Language

count(butFirst (word "dogs")) => 3 : Int

2



Consider the following function definitions. Can you figure out what they do?

addS :: Language -> Language

addS w = w +++ word "s"

thirdPerson :: Language -> Language

thirdPerson verb = sent "she" +++ addS verb

Application: Quilts

Now we will look at building expressions which are not composed of numbers or Language
values. Instead we will be manipulating quilt pieces which are of type Image. We have four
basic block values which we are given:

(a) testBB (b) cornerBB (c) novaBB (d) rcrossBB

We have two functions to manipulate the images:

Function Explanation
quarterTurnRight :: Image -> Image rotates the image by a quarter turn right
stack :: Image -> Image -> Image stacks two images (of equal width)

We need to use the function draw to display an image. Try to figure out what each of
these expressions will display:

draw (stack (quarterTurnRight testBB) rcrossBB)

draw (quarterTurnRight (stack testBB testBB))

3


