
CS119 – Module 6: Higher Order Functions

Purpose: Abstracting common patterns on computation into a function is a powerful
tool in computer science, since it makes it so we don’t have to duplicate a lot of work
over and over again. We will examine three such abstractions in the functions every, keep,
and accumulate and we will be using these three functions to solve many different problems.

Knowledge: This module will help you become familiar with the following content knowl-
edge:

• Higher order functions evey, keep, and accumulate

Activity: With your group perform the following tasks and answer the questions. You will
need to copy the lab6 directory. You will be reporting your answers back to the class in 30
minutes.

1. Take a look at the function firstLetters contained in Example6.hs.

firstLetters::Language->Language

firstLetters s =

if (empty s)

then s

else (firstItem (firstItem s)) +++ (firstLetters (butFirst s))

Try this function on the sentence sent "sentence of spam"

2. Take a look at the function squareSent.

squareSent::Language->Language

squareSent s =

if (empty s)

then s

else (squareWord (firstItem s)) +++ (squareSent (butFirst s)) where

squareWord w = if (wordIsNum w)

then intToWord (square (wordToInt w))

else w

Try this function on the sentence sent "1 2 3"

3. Describe how these two functions are similar.

1

4. Haskell allows a function to be passed as a parameter to another function. This allows
us to ”abstract” the similarities of these two functions into a higher order function
which we will call every

every::(Language->Language) -> Language -> Language

every f s =

if (empty s)

then s

else (f (firstItem s)) +++ (every f (butFirst s))

Predict the result of typing the following in the console. The let allows us to define
a function directly in the console.

let f w = word "spam"

every f (sent"one two three")

5. The function keep is another higher order function. It takes a predicate (a function
that returns true or false) as a parameter.

keep::(Language->Bool) -> Language -> Language

keep test s =

if (empty s)

then s

else if test (firstItem s)

then (firstItem s) +++ (keep test (butFirst s))

else keep test (butFirst s)

Predict the result of:

let f w = w == (word "spam")

keep f (sent"one spam two spam three")

6. The function accumulate is another higher order function. It takes a combining
function (a function that combines two values) as a parameter.

accumulate::(Language->Language->Language) -> Language -> Language

accumulate combine s =

if (count s)==1

then firstItem s

else combine (firstItem s) (accumulate combine (butFirst s))

Predict the result of:

accumulate (+++) (sent "one spam two spam three")

2

Activity: With your group perform the following tasks and answer the questions. You will
be reporting your answers back to the class in 40 minutes.

Which higher-order function (every, keep, or accumulate) would you use to perform the
following tasks? Test each of them out in the file Activity6.hs.

1. Create a sentence which contains the count of the letters for each word.

numberLetters:: Language -> Language

numberLetters w = intToWord (count w)

countLetters :: Language -> Language

countLetters s = numberLetters s

For example,
> countLetters (sent "this is a test")

[4 2 1 4]

2. Remove all but the letter ’a’ in a given word

isAnA :: Language -> Bool

isAnA letter = letter == (word "a")

removeAllButA :: Language -> Language

removeAllButA w = isAnA w

For example,
> removeAllButA (word "banana")

aaa

3. Remove all but the letter ’a’ in each word of a sentence

removeAllButASent :: Language -> Language

removeAllButASent s = removeAllButA s

For example,
> removeAllButASent (sent "eat a large banana")

[a a a aaa]

4. Take a sentence which we know contains only numbers and returns the sum of those
numbers.

addNum :: Language -> Language -> Language

addNum x y = intToWord (wordToInt x + wordToInt y)

sumNums :: Language -> Language

sumNums s = addNum s

> sumNums (sent "4 2 1 4")

11

3

5. Combine the answers above to count the number of a’s in a sentence.

countASent :: Language -> Language

countASent s = (((s)))

For example,
> countASent (sent "eat a large banana"))))

6

4

Complete the following assignments to be submitted for grading. Each should be done in-
dividually but you can consult with a classmate to discuss your strategies or if you get an
error message that you do not understand.
Write all of your functions in the file Example6.hs.In all of these assignments, you will not
have to use recursion since all the recursion is built into the higher order functions.

Assignment 1:
Use every to write a function exaggerate that takes a sentence and doubles all the
numbers in the sentence and replaces the word ”good” with the word ”great and the
word ”bad” with the word ”terrible”:

> exaggerate (sent "I ate 3 good hotdogs")

[I ate 6 great hotdogs]

Hint: You need to write the function that will be applied to each word in the sentence.
This function checks for the special cases and returns the appropriate results. Other-
wise it should just return the word unchanged.

Criteria for Success: You have written a function that when passed as a param-
eter into every gives you the body of your function exaggerate, behaving like the
given example.

Assignment 2:
Use keep to write a function firstLast that keeps only the words in a sentence whose
first and last letters are the same:

> firstLast (sent "california ohio nebraska alabama maryland")

[ohio alabama]

Criteria for Success: You have written a function that when passed as a parameter
into keep gives you the body of your function firstLast, behaving like the given
example.

5

Assignment 3:
Use accumulate to write a function hyphenate that hyphenates all the words of a
sentence together.

> hyphenate (sent "one thousand forty five")

one-thousand-forty-five

Hint: The combiner function used in accumulate must take two words and combine
them to return a single word.

Criteria for Success: You have written a function that when passed as a param-
eter into accumulate gives you the body of your function hyphenate, behaving like the
given example.

Assignment 4:
Use every, keep and accumulate to write a function acronym.

> acronym (sent "reduced instruction set computer"

risc

> acronym (sent "foundations of computer science")

fcs

Small connecting words like ”of” are not part of the acronym. You may use the function
realWord to determine if a word is irrelevant or not.

Criteria for Success: You have used a combination of the higher-order functions
to define acronym, behaving like the given examples.

Submit your Example6.hs file in Canvas for grading.

6

