
CS119 – Module 4: Tail Recursion

Purpose: There is a form of recursion, called tail recursion, that feels more like itera-
tion (loops). There are times when this type of recursion may be more natural for solving
a problem.

Knowledge: This module will help you become familiar with the following content knowl-
edge:

• Tail recursion

Activity: With your group perform the following tasks and answer the questions. You will
continue to use the lab2 files. You will be reporting your answers back to the class in 45
minutes.

1. Take a look at the following function and complete the substitutions to determine the
value of the expression f 3

f::Int -> Int

f n = fTail n 1 where

fTail m result =

if m==0

then result

else fTail (m-1) (2*m+result)

The where allows us the define a helper function inside our function and the expression
for f is just a call to the helper function.

f 3

fTail 3 1

fTail 2

fTail 1

fTail 0

No winding and unwinding! This should feel more like looping with the variables m

and result changing each time. It is still recursion though!

1

2. Use the substitution model to determine the value of the expression g (word "abc")

g::Language -> Language

g wd = gTail wd (word "") where

gtail w result =

if (empty w)

then result

else gTail (butFirst w) ((firstItem w)+++result)

g "abc"

gTail "abc" ""

gTail

gTail

gTail

3. All tail recursive functions have a helper function with an extra parameter in which
you build up the result. The result is returned at the base case.
Complete these tail recursive functions

power: Int -> Int -> Int

power base exp = pTail base exp where

pTail b e result =

if e == 0

then result

else pTail b (e-1) ()

length:: Language -> Int

length wd = lTail wd where

lTail w result =

if (empty w)

then result

else lTail () ()

2

4. Complete the tail recursive function which sums the digits of an integer n. For example
digitSum 173 would return 11. To assist you I am providing you with the substitution
model.

digitSum 173

digitTail 173 0

digitTail 17 3

digitTail 1 10

digitTail 0 11

11

lastDigit:: Int -> Int

lastDigit n = n `rem` 10

butLastDigit:: Int -> Int

butLastDigit n = n `div` 10

digitSum:: Int -> Int

digitSum n = digitTail n 0 where

digitTail n sum =

if n==0 then sum

else digitTail () ()

3

Complete the following assignments to be submitted for grading. Each should be done in-
dividually but you can consult with a classmate to discuss your strategies or if you get an
error message that you do not understand.
Write all of your functions in the file Example2.hs.

Assignment 1:
You previously wrote a function explode which behaves as follows:

> explode (word "dynamite")

[d y n a m i t e]

Write a tail recursive function explodeTail.

Criteria for Success: The function uses tail recursion for the task and returns the
correct type, which is a sentence rather than a word.

Assignment 2:
You previously wrote a function countdups which takes a sentence and returns the
number of words in the sentence that are immediately followed by the same word:

> countdups (sent "y a b b a d a b b a d o o")

3

>countdups (sent "yeah yeah yeah")

2

Write a tail recursive function countdupsTail.

Criteria for Success: The function uses tail recursion and behaves properly for the
examples given above.

Submit your Example2.hs file in Canvas for grading.

4

