CS119 — Module 12: Queues and Stacks

Purpose: Both the Queue and Stack ADTs are used throughout computer science. In
this module you will examine the Queue ADT and then implement the Stack ADT in order
to check if parentheses are matched properly in a string.

Knowledge: This module will help you become familiar with the following content knowl-

edge:
e the Queue ADT
e the Stack ADT

e analysis of the Stack and Queue operations

Activity: With your group perform the following tasks and answer the questions. You will
need to use files in the lab12 directory. You will be reporting your answers back to the

class in 30 minutes.

Consider the abstract data types Queue and Stack:
Function Explanation
empty :: Queue a gives an empty queue
isEmpty :: Queue a -> Bool determines if a queue is empty
front :: Queue a -> a gives the item that is at the front of the queue
enqueue :: a -> Queue a -> Queue a | adds an item to the rear of the queue
dequeue :: Queue a -> Queue a removes an item from the front of the queue
Function Explanation

empty :: Stack a

gives an empty stack

isEmpty :: Stack a -> Bool

determines if a stack is empty

top :: Stack a -> a

gives the item that is at the top of the stack

push :: a -> Stack a -> Stack a

adds an item to the top of the stack

pop :: Stack a —-> Stack a

removes an item from the top of the stack

1. A queue is a linear data structure which is FIFO (first in first out). A Stack is LIFO
(last in first out). For each of the tasks below, determine whether we would want to

use a stack, queue, or either.

(a
(b) Undo system in a text editor
(c
(d
(e
(f

—_ — o D T T

A language runtime system that handles recursive function calls

A system for handling waiting printer jobs for a shared printer
Page visited history in a web browser for the back button
Operating system handling multiple processes that need execution

Visiting all the pages on a website via the hyperlinks

OO
)

2. Let’s examine visiting the pages on a website. Suppose we have a website with five
pages A, B, C, D, and E. The diagram below indicates the hyperlinks on the pages.
So page A has hyperlinks to B, D, and E.

Consider the following algorithm:

visitPages :: Website a -> [al
visitPages website = (startPage website)
visit (addHyperlinks (startPage website) empty) where
visit q = if (isEmpty q) then
tl
else
(front q) : visit (addHyperlinks (front q) (dequeue q))

addHyperlinks page q = <code which enqueues the unvisited pages reached
from this page>

Complete the trace of this algorithm with the website above with start page A. (I am
using [[11 to illustrate the queue ADT in the trace):

A : (visit [[B,D,E]]) - visitPages on the website creates a list starting
with the starting page and the rest of the list is
created by the call to visit on the hyperlinks

A : B : (visit [[D,E,C]]) - Bisremoved from the queue and the unvisited

hyperlinks from B are added to the queue
in the recursive call

A : B : D: (visit)
A : B : D: (visit)
[As B’ D: H)]

3. Change the algorithm so that instead of using a Queue it uses a Stack and trace

through it again, giving the list which would be produced.

. Suppose that we decide to implement the Queue ADT with a list of elements as pro-
vided in the first implementation in the notes . If we have a queue with n elements,
in the worst case how many elements would have to be examined in the dequeue op-
eration?

How many elements would have to be examined in the enqueue operation?

Give the order of growth for both of these operations with this implementation.

. Suppose that we decide to implement the Queue ADT with two lists of elements as
provided in the second implementation in the notes . If we have a queue with n
elements, in the worst case how many elements would have to be examined in the
dequeue operation?

How many elements would have to be examined in the enqueue operation?

Give the order of growth for both of these operations with this implementation.

http://phoenix.goucher.edu/~jillz/cs119/notes12.pdf
http://phoenix.goucher.edu/~jillz/cs119/notes12.pdf

Complete the following assignments to be submitted for grading. Each should be done in-
dividually but you can consult with a classmate to discuss your strategies or if you get an
error message that you do not understand.

Assignment 1:
In a separate file, create a module for the ADT Stack and write the operations empty,
isEmpty, top, push, and pop.

Criteria for Success: In the Examplel2 file import your module. Create an empty
stack and verify that it is empty with the isEmpty function. Create a stack by pushing
a couple of values on the stack and verify that it is not empty and that the top of
the stack is correct. Pop a value off the stack and verify the new top. Check that
repeatedly popping off all the values leads to an empty stack.

Assignment 2:
In the Examplel2 file implement the function
matchingParens :: String -> Bool

This function determines if the parentheses in the string are balanced. For exam-
ple, 7(()())” is balanced but ”()(()” is not. We can check for balance by marching
through the characters and pushing a left paren onto a stack when encountered and
popping a paren off the stack on a right paren of the matching type.

To accomplish this you will want to write a helper function which takes two parameters:
your string and a Stack Char. This function will return a boolean value on whether
or not the string contains matching parens. Then all that matchingParens needs to
do is call this helper function, passing in an empty stack.

Important: To maintain abstraction this function should not be written in the Stack.hs
file nor need to know how the stack is implemented.

Criteria for Success: Test your function on ”(()())”, "()(()?, and ”())” and ver-
ify your results.

Submit all your files in Canvas for grading.

