
CS119 – Module 11: ADT Sets

Purpose: Separating the behavior of a data type with its implementation allows us to
make changes in the implementation without having to change how the data type is used.
We will illustrate this concept by extending as well as changing the ADT for the Set data
type.

Knowledge: This module will help you become familiar with the following content knowl-
edge:

• operations of the Set ADT

• multiple implementations of the Set ADT

• analysis of the Set operations

• Binary Search Tree

Activity: With your group perform the following tasks and answer the questions. You will
need to use files in the lab11 directory. You will be reporting your answers back to the
class in 30 minutes.

Consider the abstract data type Set:

Function Explanation
empty :: Set a gives an empty set
isEmpty :: Set a -> Bool determines if a set is empty
member :: Set a -> a -> Bool determines whether a value is contained in a set
insert :: a -> Set a -> Set a adds a value to a set
delete :: a -> Set a -> Set a deletes a value to a set

1. In an Abstract Data Type (ADT) the behavior of the data as indicated by the table
above is divorced from the implementation. The Set data type can be implemented
in many different ways and the program that uses that data type doesn’t have to be
concerned about the actual implementation.

Suppose that we decide to implement this ADT with a list of elements as provided in
the notes . If we have a set with n elements, in the worst case how many elements
would have to be examined in the member operation?

How many elements would have to be examined in the insert operation?

Give the order of growth for both of these operations with this implementation.

2. Suppose that we decide instead to implement this ADT with a binary search tree
(BST) as provided in the notes . In a binary search tree all elements in the left sub-
tree will be less than the root, all elements in the right subtree will be greater than
the root, and the subtrees will also be binary search trees.

Draw two different BSTs for the set {5,10,22,26,30}.

1

http://phoenix.goucher.edu/~jillz/cs119/notes11.pdf
http://phoenix.goucher.edu/~jillz/cs119/notes11.pdf


3. What are the sequences of nodes examined for each of your trees when using the
member operation for seeing if the value 15 is contained in the set?

What happens for each of your trees when we insert the value 15?

Draw the new trees with the inserted value.

Give the order of growth for both of these operations with this implementation.

4. What happens if we try to delete the value at the root of your tree? Draw the new
tree.

2



Complete the following assignments to be submitted for grading. Each should be done in-
dividually but you can consult with a classmate to discuss your strategies or if you get an
error message that you do not understand.
I have renamed the modules in the lab11 directory to Set1 and Set2. You can simply
change the import statement in the Example11 module to change the representation that
is being used.

Assignment 1:
Add set operations that compute union and intersection operations in the Set1 module.

Give the order of growth for both of these operations, along with a brief explana-
tion of how you arrived at those results.

Hint: One way to approach these problems is to iterate through the list of the first set,
checking to see if each item is in the second set.

Criteria for Success: In the Example11 file create a couple of new sets as union
and intersection of some of the existing sets. Unfortunately, we can not print a set so
you will need to use the member function to test to see if the values you expect are in
the set. Be sure to test that values that are not supposed to be in the set are also not
present, using the member function.
Make sure that you have clearly explained why you believe the order of growth values
you provided are accurate.

Assignment 2:
Add set operations that compute union and intersection operations in the Set2 module.

Give the order of growth for both of these operations.

Hint: You may want to write a function flatten which flattens a binary search tree
into a list. Once you flatten one of the trees you can write a ”helper function” which
takes a list and and a Set and performs the same type of operations that you did for
Assignment 1.

Criteria for Success: You can perform the exact same test procedure as you did
in Assignment 1. The only thing that needs to change is the import. This is the power
of ADTs at work!!
Make sure that you have clearly explained why you believe the order of growth values
you provided are accurate.

3



Assignment 3:
Sets can be represented by boolean-valued functions which indicate whether a value is
contained in the set or not. To make it easier to determine whether the set is empty
or not, we will also include an integer value representing the size of the set:

type Set a = (Int, a -> Bool)

Create a new module for this representation and write the operations empty, isEmpty,
member, insert, and delete.

Hints: It will probably feel strange to you to have a function as part of the data
type but just keep in mind what information this function provides. The function ac-
tually tells us whether or not a value is a member of the set or not. Keep in mind the
following:

1. The function empty returns a pair where the first value is an integer and the
second value is a function.
Complete the following : empty = ( ,\x-> )

2. The function isEmpty takes a Set as a parameter and that parameter is a pair
containing an integer and a function.
Complete the following : isEmpty (n,f) =

3. The function member takes a Set and a value. Remember that the Set is a pair
that contains a function that behaves like a membership function!
Complete the following : member (n,f) x =

4. Both insert and delete take a value and a Set and return a new Set. This
means that you need to define a new function which will be returned as part of
the new pair.
The structure of the functions will be as follows, where you are defining a new
membership function g which will be used as part of the return value.

insert x (n,f) = ...

where

g y = ...

Criteria for Success: You can perform the tests as before in the file Example9 where
you create sets using insert and delete and test their membership.

Submit all your files in Canvas for grading.

4


