CS119 — Module 10: Trees

Purpose: Not all data can or should be represented linearly in a list. Hierarchical data
abounds and is represented in the form of a tree. Examples from real life are family trees,
the table of contents of a book, computer files system folders and subfolders, etc. We will
look at a particular example involving data compression where a tree representation is useful.

Knowledge: This module will help you become familiar with the following content knowl-
edge:

e Manipulation of trees
e Uses of trees

Activity: With your group perform the following tasks and answer the questions. You will
be reporting your answers back to the class in 40 minutes.

1. Datatypes in Haskell can be recursive and this creates hierarchical data structures.
Consider the data type:

data ExprTree = Leaf Float | Add ExprTree ExprTree | Sub ExprTree ExprTree |
Mul ExprTree ExprTree | Div ExprTree ExprTree deriving Show

The expression Add (Mul (Leaf 2) (Leaf 3)) (Leaf 1)
represents 2*3 + 1 and can be viewed graphically as the tree:

Write expressions using the ExprTree data type to represent the following:

14+3%*5

(1+3)*5

2. This shows that the tree can represent the precedence of the operators, or in other
words it describes which operator gets evaluated first.
Draw a tree diagram that illustrates each of the expressions above.



3. Examine the function:

evaluate :: ExprTree -> Float

evaluate (Leaf x) = x

evaluate (Add el e2) = evaluate el + evaluate e2
evaluate (Sub el e2) = evaluate el - evaluate e2
evaluate (Mul el e2) = evaluate el * evaluate e2
evaluate (Div el e2) = evaluate el / evaluate e2

For each of the nodes in the tree, Add, Sub, Mul, and Div, we recursively call evaluate
on the two ”children” trees el and e2.

Write up the substitution models for evaluate on the two expressions that you wrote
up above. Do you see the "tree recursion”? Tree recursion just means that we do the
recursion for each of the children and combine the two results in some way.

4. Consider the data type:
data Tree a = Empty | Node a (Tree a) (Tree a) deriving Show

Write an expression using this data type for the following tree:

5. Let’s define a complete tree as one in which every node either is a leaf or that node has
two children. That would mean that the tree above is complete but if you removed
any one of the three leaves it would not be.

Write a function which returns true if a tree is complete and false otherwise:

complete :: Tree a -> Bool
complete Empty = True

complete (Node x Empty Empty) =
complete (Node x t1 Empty) =
complete (Node x Empty t2) =
complete (Node x tl1 t2) =




6. If we take a look at complete trees of height 0, 1, and 2 below it looks like the number
of leaves are powers of 2. We can prove by induction that the number of leaves of a
complete tree of height h is 2".

0&&

What would be the base case? Verify that the number of leaves is correct for the
base case.

Assume the number of leaves is 2% for a tree of height & < h. How would you finish
this induction proof?



Complete the following assignments to be submitted for grading. Each should be done in-
dividually but you can consult with a classmate to discuss your strategies or if you get an
error message that you do not understand.

Write all of your functions in the file Huf fman.hs contained in the 1ab10 directory.

An illustration of the use of binary trees is in the problem of data compression. Ordi-
narily, each character is represented by an 8-bit code. We can reduce the total number
of bits required to code a text by replacing this fixed-length code with a coding scheme
based on the frequency of occurrence of characters in the text. Characters that appear most
frequently should have short codes whereas characters that appear infrequently can have
longer codes. For example in the word ”text” we could encode t — 0, ¢ — 10, and = — 11.
Then the encoding of ”text” would be 010110.

We have to be careful, however, that we choose the code so that it can be uniquely decoded.
If we had chosen t — 0, e — 10, and  — 1, then both "text” and "tee” would have the
same code! Not good. To prevent this from happening we must choose the codes so that
no code is a proper prefix of any other.

To construct an optimal code satisfying the prefix property, we will use a technique called
Huffman coding (named after David Huffman). Each character is stored as the leaf in a
binary tree in such a way that more frequently used characters are of lesser depth in the
tree than less frequently used ones. The code of a character is a sequence of 0’s and 1’s
describing the path in the tree to the character, where a 0 represents a left branch and a 1
a right branch. Consider the following tree structure and tree:

data HTree = Leaf Char | Branch HTree HTree deriving Show

Branch (Branch (Leaf ’x’) (Leaf ’e’)) (Leaf ’t’)

In this tree, the character 'x’ is coded by 00, ’e’ by 01, and ’t’ by 1.

To build a Huffman tree we start with a list of characters along with their frequencies. For
example:

[<,g’)8):(’1-,,9)’(’a"11);(,1:”13))(,6))17)]

We convert this list of pairs into a list of trees and then repeatedly combine the trees with
the lightest weights until just one tree remains. The weight of a single leaf will be the weight
of the character at that leaf. The weight of a binary node is the sum of the weights of its
two subtrees. We will need another tree data type for this weighted tree:

data WeightedTree = Tip Int Char | Node Int WeightedTree WeightedTree
deriving Show

After the weighted tree is constructed we can simply remove the weights and get our HTree.



The code for construction of the weighted tree is given to you. Look through the code and
trace through it with the given frequencies. Test it out and see if you get the weighted tree
that you expect with:

> makeWeightedTree frequencies

Assignment 1:
We will make our HTree as follows:

makeHTree :: [(Char,Int)] -> HTree
makeHTree x = unweight (makeWeightedTree x)

Write the function unweight which takes a weighted tree and converts it to an HTree
by stripping off the weights.

Hint: You will need to use pattern matching with the two cases for the Weighted Tree.
Criteria for Success: Test it out by creating the huffTree which uses the weights in

the example above. Draw out the tree from the expression that is printed and verify
that it is a tree that you would expect to get.

Assignment 2:

Now that we have our HTree we can decode a message by traversing the tree making
left branches for 0’s and right branches for 1’s until you get a leaf. The given character
is produced and if you have more bits, repeat the process again starting at the root for
the next character.

Write the function decode :: HTree -> [Bit] -> [Char].

Hint: Start by writing a helper function that has an extra parameter which is an
HTree whose root is the current position while traversing the tree. You will want to
consider the cases where a) the current position is a Leaf, b) the bits are an empty list,
and c) the current position is a Branch.

Criteria for Success Test out your function with the HTree from Assignment 1 and
the bit string [1,1,0,1,1,1,1,0,0,0,0,1]. You should be able to figure out whether the text
produced is correct or not.




Assignment 3:

Encoding is not as direct since the tree is good for finding a character associated with
a bit string but poor at finding the bit string associated with a given character. So we
will write a function transform which will transform the tree into a table where we
can look up the code for a given character. This table and transform function will be

type CodeTable = [(Char, [Bit])]

transform :: HTree -> CodeTable
transform (Leaf x) = [(x,[]1)]
transform (Branch tl t2) = hufmerge (transform t1) (transform t2)

Write the function hufmerge :: CodeTable -> CodeTable -> CodeTable which takes
two code tables and merges them, adding a zero bit to the front of all the codes coming
from the first table, and a one bit to the front of all the codes coming from the second
table. Test it out by doing a transform of your HTree.

Hint: Consider the map function to add a bit to the front of all the codes in the
list.

Criteria for Success: Use the transform function on the tree that you created
previously. Take a look at the table that it is produced and verify that each letter has
the correct code.

Assignment 4:
Write the function codeLookup :: Char -> CodeTable -> [Bit] which looks up the
bit string for a given character in the CodeTable.

Criteria for Success: Perform codeLookup ’e’ (transform huffTree) and ver-
ify that you get the correct bit string for that letter.

Assignment 5:
Write the function encode :: HTree -> [Char] -> [Bit] which uses a CodeTable
to encode a string into a bits.

Criteria for Success: Encode the string ”great” and verify that you get the bit
string in Assignment 2.

Submit your Huffman.hs file in Canvas for grading.



