
Activity 5

Partial application of a function is using the function but not supplying all the arguments. Let’s look at

some examples directly in the console.

Enter the following directly into ghci:

> let add x y = x + y

> :type add

You should get

add :: Num a => a -> a -> a

The Num a => part means that the type of a is a number so it could be an Int or Float or Double.

Therefore the a->a->a indicates that x and y must be numbers and the return value is also a number.

Suppose we put in some parentheses on the type like a -> (a -> a). If we write it this way, it looks like if

we supply one argument of type a, we should get a function of type (a-> a). That means that add 3

should give us a function. Let’s try it by naming f to be the function that add 3 returns:

> let f = add 3

> :type f

You should get

f :: Integer -> Integer

This shows that the partial application of giving the function add just one argument rather than two

gives us another function which takes an Integer and returns an Integer.

What would we expect if we used the function f?

> f 4

Try partial application on the function twice.

> let twice f x = f (f x)

> let square x = x * x

>:type twice

> let g = twice (+1)

> let h = twice square

What are the types for functions g and h and what do those functions do?

Try partial application on function from the Words module

>:load Words.hs

First take a look at the types of every and accumulate:

>:type every

>:type accumulate

Now we will try partial application on those functions:

> let f = every firstItem

> let g = accumulate (+++)

What are the types of the functions f and g and what do those functions do?

