1 Administrivia

Announcements

May have jury duty Wednesday. Watch e-mail.

Assignment

Re-read 3.13.

From Last Time

Signed binary addition and subtraction.

Outline

1. VHDL program structure.

2. Structural VHDL.

3. Class practice.
2 VHDL Program Structure

VHDL is case insensitive!!

1. Structure of a VHDL program:

 Library includes;
 Entity declaration;
 Architectural definition of entity;

2. Library includes:

 -- This is a comment.
 library ieee, lcdf_vhdl;
 use ieee.std_logic_1164.all, lcdf_vhdl_.func_prims.all;

 Reserved words: library, use, .all.
 Similar to import, include statements.

3. Entity declaration:

 entity entity_name is
 port(i0, i1, i2 : in std_logic;
 o0 : out std_logic);
 end entity_name;

 Reserved words: entity, is, port, in, out, end.
 Note that entity_name follows end.

4. Architectural definition of entity:
architecture arch_name of entity_name is

 component declarations;
 signal declarations;

 begin
 VHDL statements;
end arch_name;

Reserved words: architecture, of, begin.

entity_name must match. arch_name is just a “place holder” — possible to describe an entity with multiple architectures.

Again, note that arch_name follows end.

5. Component declaration:

 component component_name
 port(i0, i1 : in std_logic;
 o0 : out std_logic);
end component;

Reserved words: component.

Like base class declarations in C++.

6. Signal declarations:

 signal s0, s1, s2 : std_logic;

Similar to variable declarations.

3 Structural VHDL

1. Describes structure of a circuit — similar to netlist. Low-level description.

2. Example: Three input EXOR.

 Equation: $\overline{i_2} \overline{i_1} i_0 + \overline{i_2} i_1 \overline{i_0} + i_2 \overline{i_1} i_0 + i_2 i_1 i_0$

 VHDL:
library ieee, lcdf_vhdl;
use ieee.std_logic_1164.all, lcdf_vhdl_.func_prims.all;

entity EXOR2 is
 port(i2, i1, i0 : in std_logic;
 o : out std_logic);
end EXOR2;

arch structural of EXOR2 is

 component NOT1
 port(in1 : in std_logic;
 out1 : out std_logic);
 end component;

 component NAND3
 port(in1, in2, in3 : in std_logic;
 out1 : out std_logic);
 end component;

 component NAND4
 port(in1, in2, in3, in4 : in std_logic;
 out1 : out std_logic);
 end component;

 signal i2_n, i1_n, i0_n, t3, t2, t1, t0 : std_logic;

begin

 g0: NOT1 port map(i2, i2_n);
 g1: NOT1 port map(i1, i1_n);
 g2: NOT1 port map(i0, i0_n);

 g3: NAND3 port map(i2_n, i1_n, i0, t3);
 g4: NAND3 port map(i2_n, i1, i0_n, t2);
 g5: NAND3 port map(i2, i1_n, i0_n, t1);
 g6: NAND3 port map(i2, i1, i0, t0);

 g7: NAND4 port map(t3, t2, t1, t0, o);

end structural;
4 Class Practice

Write structural VHDL for carry bit of full adder.