1 Administrivia

Announcements

Assignment

From Last Time

Review of exam and discussion of counter project.

Outline

1. Introduction.
2. Static RAM.
3. Dynamic RAM.

Coming Up

Review for final.
2 Introduction

1. Organizations of RAMs: number of words, bits/word.

2. Operation:
 (a) Not enabled: low power mode, output in high-impedance state (disconnected)
 (b) Read: A single word should be read. Address may change.
 (c) Write: A single word should be written. Address must be stable.
 (d) Refresh. Hidden or not hidden?

3. RAM will have a 2-D structure: row/word, column/bit.
 The number of columns may not have anything to do with bits/word — many RAMs have 1 bit/word but are 2-D internally.

4. RAMS consist of:
 (a) Storage cells.
 (b) Word and bit decoders.
 (c) Write logic.
 (d) Read logic (sense amp).
 (e) Refresh logic for DRAMs.

3 Static RAM

1. Memory cell model:
Goal: cell should be as small as possible, to increase storage density.

Think about the AND gates on the output side as tri-state buffers — transmission gates.

2. Bit slice of a RAM array:

3. Assume you have 4×1 bit-slice RAM cells. Adding 2-to-4 decoders, how would a 4×4 RAM look? A 16×1 RAM?

4 Dynamic RAM

1. DRAM cell:
2. SRAM cell: five or six transistors. DRAM cell: one transistor and one capacitor.

3. Bit-Slice: support structure similar.

4. Bit line has higher capacitance than storage capacitor — sense amps.

5. *Destructive* read. Use of sense amps to restore data.