
This document was orginally developed by the Campus Computing Organization at Caltech, edited
locally to provide a better match to the computing environment at our site. (this editing is in progress,
12/94).

Unix Tutorial

Contents

A Sample Login Session
Logging On
Using the On-line Man Pages
Using man and more
Logging Off

Directory and File Structure
File Names
Directories
The df Program
Your Login Directory
Subdirectories
Specifying Files
Protecting Files and Directories
The Unix Shell Syntax
Creating Files
Text Editors
Files as Output and Log Files
Logging Your Actions to a File
Comparing Files
Searching Through Files

The System and Dealing with Multiple Users
Information about Your Processes
Information about Other People’s Processes

Sending Messages and Files to Other Users
/usr/ucb/mail
PINE
Write
Talk
Addressing Remote Nodes

Shortcuts
Aliases
Wildcards
Directory Specifications
Environment Variables
History
The .login and .cshrc Files

Job Control
The fg and bg Commands
Starting Jobs in the Background

Some Common and Useful Unix Commands For Files

A Sample Login Session
The School of Oceanography has several Unix workstations available for use in two public workrooms,
265 MSB and 212 ORB (more information). Any of these accept logins over the campus network as
well. Our principal server is tsunami.ocean whose environment is mirrored on reef, shoal, dune and
jetty.

Logging On

When you first connect to one of the Unix computers you will see the prompt:

login:

If you see only the prompt Password: you probably used rlogin. rlogin assumes that your username
is the same on all computers and enters it for you. If your username is different, don’t worry, just press
<CR> until you see the login: prompt and start from scratch.

At the login: prompt, type in your username. Be careful to type only lowercase! The Unix operating
system is ‘‘case sensitive.’’ If you type your username in mixed case (Rarmour rather than rarmour,
for example) the computer will not recognize it.

Your Password

Once you have typed in your username you will be prompted to type in your password. Type carefully!
It won’t be displayed on the screen.

When you first login, you should change your password with the yppasswd command. Remember
again-these are lower case commands and Unix insists that you type them that way.

Your password should be longer than six characters. It’s a good idea to make it mixed case or to stick
some numbers or symbols in it, like ‘‘,’’ or ‘‘^’’. One of few password restrictions is that the password
cannot be all-numeric (like 5534553). Because of a bug on the Sun computers, do not put a ‘‘:’’ in your
password.

In the interests of self-preservation, don’t set your password to your username, to ‘‘password’’ or to any
information which people are likely to know about you (your real name, your nickname, your pet dog’s
name).

If you mistype your username or password you will get a suspicious message from the computer and see
the login: prompt again.

The motd

If you type your username and password correctly, the computer will begin running the login program. It

starts by displaying a special ‘‘message of the day’’---contained in the /etc/motd file. This file will
usually contain information about the computer you are logging onto, maybe a basic message about
getting help, and any important system messages from the system manager.

Initialization Files

When you log in the Unix login program finally starts up a command ‘‘shell.’’ Users do not deal with
the operating system directly. Instead they interact with a shell, which is initialized with several pieces
of information (such as your username, login directory and ‘‘path’’). By default all users use the C shell
(the program /bin/csh) and interact with it.

There are a couple of files read by this shell when your login session starts up. These are the .cshrc file
and the .login file. These files are created when your account is created. As you learn more about how
Unix and the C shell work, you may want to customize these files.

If your files get corrupted for some reason, copies of the system defaults are available in /usr/local/skel/.

Using the System

Finally you are logged in! You will see a prompt like one of the following three:

pooh>

{coil:1}

%

just waiting for you to type something. Throughout the Unix Tutorial section we will use % to indicate
the computer’s ‘‘ready’’ prompt.

ls

Okay, let’s try a simple command. Type ls and press . ls is the program to list files in a directory. Right
now you may or may not see any files-not seeing any files doesn’t mean you don’t have any! Just plain
ls won’t list hidden files (files whose names start with ‘‘.’’, like .login). Now try typing:

% ls -a

Don’t actually type the % symbol! Remember, that’s the computer’s prompt which indicates it is ready to
accept input. The spacing should be exactly as shown. ls followed by a space, followed by a -a. The -a
is a ‘‘flag’’ which tells the ls program to list all files.

For more about command flags see below.

cd

Just for fun, let’s look at the contents of another directory, one with lots of files. Directory names in
Unix are straightforward. They are all arranged in a tree structure from the root directory ‘‘/’’.

For now, use cd to change your directory to the /bin directory. Type:

% cd /bin

and press <CR>. Now type ls again. You should see a long list of files-in fact, if you look carefully you
will see files with the names of the commands we’ve been typing (like ls and cd). Note that the /bin in
the command we typed above was not a flag to cd. It was a ‘‘parameter.’’ Flags tell commands how to
act, parameters tell them what to act on.

Now return to your login directory with:

% cd

Entering cd with no parameter returns you to your home directory. You can check to make sure that it
worked by entering:

% pwd

which prints your current (or ‘‘working’’) directory. The computer should return a line of words
separated by ‘‘/’’ symbols which should look something like:

/home/username

Whatever it returns, the list should end in your username.

Using the On-line Man Pages

Most Unix commands have very short and sometimes cryptic names like ls. This can make
remembering them difficult. Fortunately there are on-line manual pages which allow you to display
information on a specific program (to list all the flags of ls, for example) or list all the information
available on a certain topic.

man

To investigate other flags to the ls command (such as which flags will display file size and ownership)
you would type man ls.

man -k

The second way of using the on-line manual pages is with man -k. In this case you use a word you
expect to be in a one-line description of the command you wish to find. To find a program which ‘‘lists
directory contents’’ you might type man -k dir. Partial words can be used and this is one of the few
places in Unix where upper and lower case are allowed to match each other.

Using man and more

Try it now. Use man ls to find out how to make the ls program print the sizes of your files as well as
their names. After typing man ls and pressing , note how man displays a screenful of text and then waits
with a prompt --More-- at the bottom of the screen.

What man is doing is sending everything it wants to display to the screen through a program known as a
‘‘pager’’ The pager program is called more. When you see --More-- (in inverse video) at the bottom of
the screen, just press the space-bar to see the next screenful. Press <CR> to scroll a line at a time.

Have you found the flag yet? The -s flag should display the size in kilobytes. You don’t need to
continue paging once you have found the information you need. Press q and more will exit.

Listing File Sizes

Now type ls -as. You can stack flags together like this-this tells ls to list all files, even hidden files,
and list their sizes in kilobytes.

Logging Off

When you are finished you should be sure to logout! You need to be careful that you’ve typed logout
correctly. The Unix operating system is not forgiving of mis-typed commands. Mis-typing logout as
‘‘logotu’’, pressing return and then leaving without glancing at the screen can leave your files at
anyone’s mercy.

Directory and File Structure
When you list files in Unix, it is very hard to tell what kind of files they are. The default behavior of the
ls program is to list the names of all the files in the current directory without giving any additional
information about whether they are text files, executable files or directories! This is because the
‘‘meaning’’ of the contents of each file is imposed on it by how you use the file. To the operating
system a file is just a collection of bytes.

There is a program file which will tell you information about a file (such as whether it contains binary
data) and make a good guess about what created the file and what kind of file it is.

File Names

Unlike other operating systems, filenames are not broken into a name part and a type part. Names can be
many characters long and can contain most characters. Some characters such as * and ! have special
meaning to the shell. They should not be used in filenames. If you ever do need to use such a symbol
from the shell, they must be specified sneakily, by ‘‘escaping’’ them with a backslash, for example \!.

Directories

Directories in Unix start at the root directory ‘‘/’’. Files are ‘‘fully specified’’ when you list each
directory branch needed to get to them.

/usr/local/lib/news

/home/pamela/src/file.c

The ‘‘File System’’ Tree Structure

Usually disks are ‘‘partitioned’’ into smaller sized sections called partitions If one partition of the disk
fills up the other partitions won’t be affected.

Only certain large directory points are partitions and the choice of these points can vary among system
managers. Partitions are like the larger branches of a tree. Partitions will contain many smaller branches
(directories) and leaves (files).

The df Program

To examine what disks and partitions exist and are mounted, you can type the df command at the %
prompt. This should display partitions which have names like /dev/sd3g---3 for disk 3, g for partition
g. It will also display the space used and available in kilobytes and the ‘‘mount point’’ or directory of
the partition.

Disk Space Maintenance

It’s important to keep track of how much disk space you are using. The command du displays the disk
usage of the current directory and all of its subdirectories. It displays the usage, in kilobytes, for each
directory-including any subdirectories it contains-and ends by displaying the total.

% du
display disk usage of current directory

% du -s
display only total disk usage

% du -s -k
some versions of Unix need -k to report kilobytes

Scratch Space

Users have home directories for storing permanent files. At various busy times of the year there may be
shortages of disk space on the Unix Cluster. You should use the du command to stay aware of how
much space you are using and not exceed the system limits.

Your Login Directory

A login directory can always be specified with ~username (~ is commonly called ‘‘twiddle,’’ derived from
proper term ‘‘tilde.’’) If you needed to list files in someone else’s login directory, you could do so by
issuing the command:

% ls ~username

substituting in their username. You can do the same with your own directory if you’ve cd’d elsewhere.
Please note-many people would consider looking at their files an invasion of their privacy; even if the
files are not protected! Just as some people leave their doors unlocked but do not expect random
bypassers to walk in, other people leave their files unprotected.

Subdirectories

If you have many files or multiple things to work on, you probably want to create subdirectories in your
login directory. This allows you to place files which belong together in one distinct place.

Creating Subdirectories

The program to make a subdirectory is mkdir. If you are in your login directory and wish to create a
directory, type the command:

% mkdir directory-name

Once this directory has been created you can copy or move files to it (with the cp or mv programs) or
you can cd to the directory and start creating files there.

Copy a file from the current directory into the new subdirectory by typing:

cp filename directory-name/new-filename
copy file, give it a new name

cp filename directory-name
copy file, filename will be the same as original

Or cd into the new directory and move the file from elsewhere:

% cd directory-name
% cp ../filename .

copies the file from the directory above giving it the same filename: ‘‘.’’ means ‘‘the current directory’’

Specifying Files

There are two ways you can specify files. Fully, in which case the name of the file includes all of the
root directories and starts with ‘‘/’’, or relatively, in which case the filename starts with the name of a
subdirectory or consists solely of its own name.

When Charlotte Lennox (username lennox) created her directory arabella, all of the following sets of
commands could be used to display the same file:

 % more lennox/arabella/chapter1
or
 % cd lennox
 % more arabella/chapter1
or

 % cd lennox/arabella
 % more chapter1

The full file specification, beginning with a ‘‘/’’ is very system dependent. On oceanography machines,
all user directories are in the /usra partition.

/usra/lennox/arabella/chapter1

Protecting Files and Directories

When created, all files have an owner and group associated with them. The owner is the same as the
username of the person who created the files and the group is the name of the creator’s default login
group, such as users, system etc. Most users do not belong to a shared group on our systems. If the
creator of the file belongs to more than one group (you can display the groups to which you belong with
the groups command) then the creator can change the group of the file between these groups.
Otherwise, only the root account can change the group of a file.

Only the root account can change the ownership of a file.

Displaying owner, group and protection

The command ls -lg filename will list the long directory list entry (which includes owner and
protection bits) and the group of a file.

The display looks something like:

protection owner group filename
-rw-r----- hamilton ug munster_village

The Protection Bits

The first position (which is not set) specifies what type of file this is. If it were set, it would probably be
a d (for directory) or l (for link). The next nine positions are divided into three sets of binary numbers
and determine protection to three different sets of people.

 u g o
rw- r-- ---
 6 4 0

The file has ‘‘mode’’ 640. The first bits, set to ‘‘r + w’’ (4+2) in our example, specify the protection for
the user who owns the files (u). The user who owns the file can read or write (which includes delete) the
file.

The next trio of bits, set to 4, or ‘‘r,’’ in our example, specify access to the file for other users in the
same group as the group of the file. In this case the group is ug-all members of the ug group can read the
file (print it out, copy it, or display it using more).

Finally, all other users are given no access to the file.

The one form of access which no one is given, even the owner, is ‘‘x’’ (for execute). This is because the
file is not a program to be executed-it is probably a text file which would have no meaning to the
computer. The x would appear in the 3rd position and have a value of 1.

Changing the Group and the Protection Bits

The group of a file can be changed with the chgrp command. Again, you can only change the group of a
file to a group to which you belong. You would type as follows:

% chgrp groupname filename

You can change the protection mode of a file with the chmod command. This can be done relatively or
absolutely. The file in the example above had the mode 640. If you wanted to make the file readable to
all other users, you could type:

 % chmod 644 filename
or
 % chmod +4 filename (since the current mode of the file was 640)

For more information see the man page for chmod.

Default Protections: Setting the umask

All files get assigned an initial protection. To set the default initial protection you must set the value of
the variable umask. umask must be defined once per login (usually in the .cshrc file). Common umask
values include 022, giving read and directory search but not write permission to the group and others
and 077 giving no access to group or other users for all new files you create.

The Unix Shell Syntax

As mentioned earlier, user commands are parsed by the shell they run. There are many shells other than
the the C shell which allow different types of shortcuts. We will only discuss the C shell here, but some
alternate shells include the Bourne shell (/bin/sh), the Bourne-Again Shell (bash), zsh and tcsh (a
C shell variant).

The Path

One of the most important elements of the shell is the path. Whenever you type something at the %
prompt, the C shell first checks to see if this is an ‘‘alias’’ you have defined, and if not, searches all the
directories in your path to determine the program to run.

The path is just a list of directories, searched in order. Your default .cshrc will have a path defined for
you. If you want other directories (such as a directory of your own programs) to be searched for
commands, add them to your path by editing your .cshrc file. This list of directories is stored in the
PATH environment variable. We will discuss how to manipulate enviroment variables later.

Flags and Parameters

Most commands expect or allow parameters (usually files or directories for the command to operate on)
and many provide option flags. A ‘‘flag’’ as we saw before, is a character or string with a - before it-like
the -s we used with the ls command.

Some commands, such as cp and mv require file parameters. Not surprisingly, cp and mv (the copy and
move commands) each require two! One for the original file and one for the new file or location.

It would seem logical that if ls by itself just lists the current directory then cp filename should copy a
file to the current directory. This is logical-but wrong! Instead you must enter cp filename . where the
‘‘.’’ tells cp to place the file in the current directory. filename in this case would be a long filename with
a complete directory specification.

Not surprisingly ls . and ls are almost the same.

Creating Files

The cat Program

cat is one of most versatile commands. The simplest use of cat:

% cat .cshrc

displays your .cshrc file to the screen. Unix allows you to redirect output which would otherwise go to
the screen by using a > and a filename. You could copy your .cshrc, for example, by typing:

% cat .cshrc > temp

This would have the same effect as:

% cp .cshrc temp

More usefully cat will append multiple files together.

% cat .cshrc .login > temp

will place copies of your .cshrc and .login into the same file. Warning! Be careful not to cat a file
onto an existing file! The command:

% cat .cshrc > .cshrc

will destroy the file .cshrc if it succeeds.

If you fail to give cat a filename to operate on, cat expects you to type in a file from the keyboard. You
must end this with a <Ctrl>-D on a line by itself. <Ctrl>-D is the end-of-file character.

By combining these two-leaving off the name of a file to input to cat and telling cat to direct its output
to a file with > filename, you can create files.

For example:

% cat > temp

;klajs;dfkjaskj
alskdj;kjdfskjdf
<Ctrl>-D
%

This will create a new file temp, containing the lines of garbage shown above. Note that this creates a
new file-if you want to add things on to the end of an existing file you must use cat slightly differently.
Instead of > you’d use >> which tells the shell to append any output to an already existing file. If you
wanted to add a line onto your .cshrc, you could type

% cat >> .cshrc
echo "blah blah blah"
<Ctrl>-D
%

This would append the line echo "blah blah blah" onto your .cshrc. Using > here would be a bad
idea-it might obliterate your original .cshrc file.

Text Editors

cat is fine for files which are small and never need to have real changes made to them, but a full fledged
editor is necessary for typing in papers, programs and mail messages. Among the editors available pico,
vi and emacs.

Be careful! Not all Unix editors keep backup copies of files when you edit them.

pico

pico is a simple, friendly editor--the same editor as used in pine. Type pico filename to start it and type
man pico for more information about how to use it.

vi

vi is an editor which has a command mode and a typing mode. When you first startup vi (with the
command vi filename) it expects you to enter commands. If you actually want to enter text into your
file, you must type the insert command i. When you need to switch back to command mode, hit the
escape key, usually in the upper left corner of your keyboard.

To move around you must be in command mode. You can use the arrow keys or use j, k, h, l to
move down, up, left and right.

For more information type man vi. There are two reference sheets containing lists of the many vi
commands available from C&C (located at Brooklyn and Pacific).

Emacs

Emacs is a large editing system. Copies of the manual are for sale at the CCO Front Desk and copies of
the two-page reference sheet are available in the reference sheet rack across from the Front Office.

To use emacs, type:

% setup emacs
% emacs

Files as Output and Log Files

Ordinarily there are two types of output from commands: output to standard output (stdout) and to
standard error (stderr). The > and >> examples above directed only standard output from programs into
files. To send both the standard output and error to a file when using the C shell, you should type >& :

% command >& filename

Logging Your Actions to a File

Sometimes you may wish to log the output of a login session to a file so that you can show it to
somebody or print it out. You can do this with the script command. When you wish to end the session
logging, type exit.

When you start up you should see a message saying script started, file is typescript and
when you finish the script, you should see the message script done. You may want to edit the
typescript file-visible ^M’s get placed at the end of each line because linebreaks require two control
sequences for a terminal screen but only one in a file.

Comparing Files

The basic commands for comparing files are:

cmp
states whether or not the files are the same

diff
lists line-by-line differences

comm
three column output displays lines in file 1 only, file 2 only, and both files

See the man pages on these for more information.

Searching Through Files

The grep program can be used to search a file for lines containing a certain string:

% grep string filename
% grep -i string filename (case insensitive match)

or not containing a certain string:

% grep -v string filename

See the man page for grep---it has many useful options.

more and the vi editor can also find strings in files. The command is the same in both-type a /string
when at the --More-- prompt or in vi command mode. This will scroll through the file so that the line
with ‘‘string’’ in it is placed at the top of the screen in more or move the cursor to the string desired in
vi. Although vi is a text editor there is a version of vi, view, which lets you read through files but
does not allow you to change them.

The System and Dealing with Multiple Users
Most Unix commands which return information about how much CPU-time you’ve used and how long
you’ve been logged in use the following meanings for the words ‘‘job’’ and ‘‘process.’’

When you log in, you start an interactive ‘‘job’’ which lasts until you end it with the logout command.
Using a shell like C shell which has ‘‘job-control’’ you can actually start jobs in addition to your login
job. But for the purposes of the most information returning programs, job (as in the ‘‘JCPU’’ column)
refers to your login session.

Processes, on the other hand, are much shorter-lived. Almost every time you type a command a new
process is started. These processes stay ‘‘attached’’ to your terminal displaying output to the screen and,
in some cases (interactive programs like text editors and mailers) accepting input from your keyboard.

Some processes last a very long time-for example the /bin/csh (C shell) process, which gets started
when you login, lasts until you logout.

Information about Your Processes

You can get information about your processes by typing the ps command.

 PID TT STAT TIME COMMAND
 9980 s9 S 0:06 -csh (csh)
12380 s9 R 0:01 ps

The processes executing above are the C shell process and the ps command. Note that both commands
are attached to the same terminal (TT), have different process identification numbers (PID), and have
different amounts of CPU-time (TIME), accumulated.

Information about Other People’s Processes

who

The simplest and quickest information you can get about other people is a list of which users are logged
in and at which ‘‘terminals’’ (terminal here is either a terminal device line or telnet or rlogin session).

The command to do this is who and it responds quickest of all the commands discussed here because it
simply examines a file which gets updated everytime someone logs in or out.

Be careful though! This file, utmp, can get out of date if someone’s processes die unexpectedly on the
system. Any program which uses utmp to report information may list users who are not really logged in!

w

The w command is slower than the who command because it returns more information such as details
about what programs people are running. It also returns a line containing the number of users and the
system load average. The load average is the average number of processes ready to be run by the CPU
and is a rough way of estimating how busy a system is.

w also uses the utmp file mentioned above. It takes longer than who because it then looks around and
collects more information about the users it finds in the utmp file.

ps

The ps command used earlier to list your own processes can be used to list other users’ processes as
well. who and w list logins-but not individual processes on the system. They don’t list any of the running
operating system processes which start when the computer is booted and which don’t have logins.

Since ps doesn’t use utmp it is the program to use when you really want to find out what processes you
might have accidentally left on the system or if another user is running any processes. Note that although
ps might report processes for a user, it might be because that user has left a ‘‘background job’’
executing. In this case you should see a ‘‘?’’ in the TT field and the user won’t really be logged in.

To get this fuller listing, give the flags -aux to ps. For more information on the uses of ps, type man ps.

finger

The finger program returns information about other users on the system who may or may not be logged
in. finger by itself returns yet another variation of the list of currently logged in users. finger followed
by a username or an e-mail -style address will return information about one or more users, the last time
they logged into the system where you are fingering them, their full name, whether or not they have
unread mail and, finally, the contents of two files they may have created: .plan and .project

For more information about using finger or ways to provide information about yourself to others, type
man finger.

Sending Messages and Files to Other Users
Electronic mail programs run on almost all the computers at Caltech and usually have two parts: a user
interface which lets users read and send messages and a system mailer which talks to mailers on other
computers. This mailer receives outgoing messages from the user interface programs and delivers
incoming messages to the user mailbox (which the interface program reads).

/usr/ucb/mail

There are many user interfaces available on the Unix computers, all of which provide similar
functionality. The program supplied with most Unix computers is /usr/ucb/mail (or Mail). To read
messages type Mail, to send messages type:

% Mail address

Mail has been changed to mailx.

You should next see a Subject: prompt. If you don’t see a prompt, don’t worry, just type in your one
line subject anyway and press return. You may start typing your message (but you will be unable to
correct errors on lines after you have pressed <CR> to move to the next line) or you may may specify a
file to include with r filename.

You may invoke a text editor like vi by typing v. If you wish regularly to use an editor other than vi
you should see the information later in this section about enviroment variables.

There are many other commands you may enter at this point-see the Mail man page for all of them.
When you are finished typing in your message (if you have used v to run a text editor, you should exit
from it) press <Ctrl>-D on a line by itself. Most likely you will now see a CC: prompt. If you wish to
send copies of your message to someone besides the recipient you would enter the address or addresses
(separated by ‘‘,’’) and press return. Otherwise press return without entering an address.

PINE

PINE is a full-screen interactive mailer, developed at UW, that is very straightforward to use. To use it
type pine. More information is available from the UW C&C web server.

Write

The write program can be used to send messages to other users logged onto the system. It’s not a great
way of having a conversation, but it’s simple to use. Enter:

% write username

and you can start writing lines to the terminal of the person you want to send messages to. The person
must be logged in, and, if they are logged in more than once, you must specify the terminal to write
to-for example write melville ttyh1.

Talk

talk is a program which allows two users to hold a conversation. Unlike write, it can be used between
different computers; and, unlike write, it divides the screen so that the things you type appear in the top
half and the things written to you appear in the bottom half.

To talk to users on the same computer:

% talk username

To talk to users on another computer use the address format of username@nodename:

% talk brunton@jarthur.claremont.edu

Addressing Remote Nodes

talk can only be used to other Internet nodes-computers which usually have ending names such as .edu,
.com, .org, .gov, or .mil. Not all computers with these names are attached directly to the Internet---
finger and talk won’t work with computers which are only attached by mail gateways.

Shortcuts
If you use certain command flags regularly (-lga for ls) you can alias them to shorter commands.
You can use wildcard symbols to refer to files with very long names. You can easily repeat commands
you have already executed or modify them slightly and re-execute them.

Aliases

As mentioned above, you can alias longer commands to shorter strings. For example, ls -F will list
all the files in the current directory followed by a trailing symbol which indicates if they are executable
commands (a *) or directories (a /). If you wanted this to be the default behavior of ls you could add the
following command to your .cshrc:

% alias ls ls -F

To list the aliases which are set for your current process, type:

% alias

without any parameters.

Wildcards

Wildcards are special symbols which allow you to specify matches to letters or letter sequences as part
of a filename.

Some examples:

*
The basic wildcard character. Beware rm *!!
ls *.dat

lists all files ending in .dat
ls r*

lists all files starting with r
?

a one character wildcard.
ls ?.dat

lists 5.dat, u.dat, but not 70.dat
[]

limits a character to match one of the characters between the brakets
ls *.[ch]

lists all .h and .c files
more [Rr][Ee][Aa][Dd][Mm][Ee]

mores the files README, readme,ReadMe, and Readme, among others

Directory Specifications

You’ve already met the shortcut. The two other important directory symbols are ‘‘.’’ for the current
directory and ‘‘..’’ for the previous (parent) directory.

% cd ..

moves you out of a subdirectory into its parent directory.

Environment Variables

Environment variables are pieces of information used by the shell and by other programs. One very
important one is the PATH variable mentioned earlier. Other important variables you can set include:

EDITOR
TERM
MAIL

To see what environment variables are set and what they are set to, type the command printenv. To set
a variable, use the setenv command as in the example below.

% setenv TERM vt100
% setenv EDITOR emacs

Many programs mention environment variables you may want to set for them in their man pages. Look
at the csh man page for some of the standard ones.

History

Most shells allow ‘‘command line editing’’ of some form or another-editing one of the previous few
lines you’ve typed in and executing the changed line. You can set a history ‘‘environment variable’’ to
determine how many previous command lines you will have access to with set history=40

Repeating and Modifying the Previous Command

The simplest form of command line editing is to repeat the last command entered or repeat the last
command entered with more text appended.

If the last command you typed was:

% ls agreen

Then you can repeat this command by typing:

% !!

This will return a list of files. If you saw a directory leavenworth in the list returned and you wanted to
list the files it contained, you could do so by typing:

% !!/leavenworth

If you mistype leavenworth as leaveworth you can correct it with the following command:

% ^leave^leaven

This substitutes leaven for leave in the most recently executed command. Beware! This substitutes for
the first occurrence of leave only!

Repeating Commands From Further Back in History

You can type history at any time to get a list of all the commands remembered. This list is numbered
and you can type ! number to repeat the command associated with number. Alternately you can type !
and a couple of letters of the command to repeat the last line starting with the characters you specify.
!ls to repeat ls -lg agreen, for example.

The .login and .cshrc Files

The .cshrc file is run whenever a C shell process is started. Then, if this is a login process, the .login
file is executed. If you are using a NeXT console with a program such as Terminal, you can usually
choose whether you want each new window to execute the .login file by making a change to your
Preferences in the Terminal program’s Preferences menu. By default the .login will get executed.

If you are using a Sun console and you have the default setup, any xterm windows which you start up
will not execute the .login.

Job Control
It is very easy to do many things at once with the Unix operating system. Since programs and commands
execute as independent processes you can run them in the ‘‘background’’ and continue on in the

foreground with more important tasks or tasks which require keyboard entry.

For example, you could set a program running in the background while you edit a file in the foreground.

The fg and bg Commands

When you type <Ctrl>-Z whatever you were doing will pause. If you want the job to go away without
finishing, then you should kill it with the command kill %. If you don’t want it paused but want it to
continue in the foreground-that is, if you want it to be the primary process to which all the characters
you type get delivered-type fg. If you want it to continue processing in the background while you work
on something else, type bg.

You should not use bg on things which accept input such as text editors or on things which display
copious output like more or ps.

What to Do When You’ve Suspended Multiple Jobs

If you’ve got several processes stopped-perhaps you are editing two files or you have multiple telnet
or rlogin sessions to remote computers-you’ll need some way of telling fg which job you want brought
to the foreground.

By default fg will return you to the process you most recently suspended. If you wanted to switch
processes you would have to identify it by its job number. This number can be displayed with the jobs
command. For example:

% jobs
[1] Stopped vi .login
[2] + Stopped rn
[3] Running cc -O -g test.c
%

The most recently suspended job is marked with a + symbol. If you wanted to return to job one instead,
you would type:

% fg %1

You can type %1 as a shortcut.

Starting Jobs in the Background

Some jobs should start in the background and stay there-long running compilations or programs, for
example. In this case you can direct them to the background when you start them rather than after they
have already begun. To start a job in the background rather than the foreground, append an & symbol to
the end of your command.

You should always run background processes at a lower priority by using the nice command.
Non-interactive jobs are usually very good at getting all the resources they need. Running them at a
lower priority doesn’t hurt them much-but it really helps the interactive users-people running programs

that display to terminal screens or that require input from the keyboard.

If you need to run CPU-intensive background jobs, learn about how to control the priority of your jobs
by reading the manual pages (man nice and man renice).

Suspend, z and <Ctrl>-Z

Some programs provide you with special ways of suspending them. If you started another shell by using
the csh command, you would have to use the suspend command to suspend it.

If you wish to suspend a telnet or rlogin session you must first get past the current login to get the
attention of the telnet or rlogin program.

Use (immediately after pressing a return) to get rlogin’s attention. <Ctrl>-Z will suspend an rlogin
session.

Use <Ctrl>-] to get telnet’s attention <Ctrl>-]z will suspend a telnet session. Watch out, though, if you
are connected from a PC with through Kermit! <Ctrl>-] is Kermit’s default escape sequence. You’ll
need to type <Ctrl>-] z or define Kermit’s escape sequence to something else such as <Ctrl>-K.

Some Common and Useful Unix Commands For
Files
cp

The cp command allows you to create a new file from an existing file. The command line format is:

% cp input-file-spec output-file-spec

where input-file-spec and output-file-spec are valid Unix file specifications. The file specifications
indicate the file(s) to copy from and the file or directory to copy to (output). Any part of the filename
may be replaced by a wildcard symbol (*) and you may specify either a filename or a directory for the
output-file-spec. If you do not specify a directory, you should be careful that any wildcard used in the
input-file-spec does not cause more than one file to get copied.

% cp new.c old.c
% cp new.* OLD (where OLD is a directory)

ls

command allows the user to get a list of files in the current default directory. The command line format
is:

% ls file-spec-list

where file-spec-list is an optional parameter of zero or more Unix file specifications (separated by

spaces). The file specification supplied (if any) indicates which directory is to be listed and the files
within the directory to list.

lpr

The lpr command tells the system that one or more files are to be printed on the default printer. If the
printer is busy with another user’s file, an entry will be made in the printer queue and the file will be
printed after other lpr requests have been satisfied. The command line format is:

BLOCKQUOTE> % lpr file-spec-list

where file-spec-list is one or more Unix files to be printed on the default printer. Any part of the
filenames may be replaced by a wild card.

Here is more information about where the printers actually are and what kind of printers are available.

man

The man command is a tool that gives the user brief descriptions of Unix commands along with a list of
all of the command flags that the command can use. To use man, try one of the following formats:

% man command
% man -k topic

more

The more command will print the contents of one or more files on the user’s terminal. The command
line format is:

% more file-spec-list

more displays a page at a time, waiting for you to press the space-bar at the end of each screen. At any
time you may type q to quit or h to get a list of other commands that more understands.

mv

The mv command is used to move files to different names or directories. The command line syntax is:

% mv input-file-spec output-file-spec

where input-file-spec is the file or files to be renamed or moved. As with cp, if you specify multiple
input files, the output file should be a directory. Otherwise output-file-spec may specify the new name of
the file. Any or all of the filename may be replaced by a wild card to abbreviate it or to allow more than
one file to be moved. For example:

% mv data.dat ./research/datadat.old

will change the name of the file data.dat to datadat.old and place it in the subdirectory research.

Be very careful when copying or moving multiple files.

rm

The rm command allows you to delete one or more files from a disk. The command line format is:

% rm file-spec-list

where file-spec-list is one or more Unix file specifications, separated by spaces, listing which files are to
be deleted. Beware of rm *! For example:

% rm *.dat able.txt

will delete the file able.txt and all files in your current working directory which end in .dat. Getting
rid of unwanted subdirectories is a little more difficult. You can delete an empty directory with the
command rmdir directory-name but you cannot use rmdir to delete a directory that still has files in it.

To delete a directory with files in it, use rm with the -r flag (for recursive).

