
A use case lists a

sequence of

actions that yields

a result that is of

value to an actor.

As you will see in Chapters 4 and 6, exploiting inheritance relationships can lead to very

powerful and extensible designs. However, we must point out that inheritance is much

less common than the dependency and aggregation relationships. Many designs can best

be modeled by employing inheritance in a few selected places.

2.6. UUse Casesse Cases

Use cases are an analysis technique to describe in a formal way how a computer system

should work. Each use case focuses on a specific scenario, and describes the steps that

are necessary to bring it to successful completion. Each step in a use case represents an

interaction with people or entities outside the computer system (the actors) and the

system itself. For example, the use case “Leave a message” describes the steps that a

caller must take to dial an extension and leave a message. The use case “Retrieve

messages” describes the steps needed to listen to the messages in the mailbox. In the first

case, the actor is the caller leaving a message. In the second case, the actor is the mailbox

owner.

An essential aspect of a use case is that it must describe a scenario that completes to a

point that is of some value to one of the actors. In the case of “Leave a message”, the value

to the caller is the fact that the message is deposited in the appropriate mailbox. In

contrast, merely dialing a telephone number and listening to a menu would not be

considered a valid use case because it does not by itself have value to anyone.

Of course, most scenarios that potentially deliver a valuable outcome can also fail for one

reason or another. Perhaps the message queue is full, or a mailbox owner enters the

wrong password. A use case should include variations that describe these situations.

Minimally, a use case should have a name that describes it concisely, a main sequence of

actions, and, if appropriate, variants to the main sequence. Some analysts prefer a more

formal writeup that numbers the use cases, calls out the actors, refers to related use

cases, and so on. However, in this book we’ll keep use cases as simple as possible.

Here is a sample use case for a voice mail system.

Leave a Message

1. The caller dials the main number of the voice mail system.

2. The voice mail system speaks a prompt.

Enter mailbox number followed by #.

3. The user types in the extension number of the message recipient.

4. The voice mail system speaks.

You have reached mailbox xxxx. Please leave a message now.

5. The caller speaks the message.

6. The caller hangs up.

14For the students of Kelliher, Thomas <kelliher@goucher.edu>



A CRC card is an

index card that

describes a class,

its high-level

responsibilities,

and its

collaborators.

7. The voice mail system places the recorded message in the recipient’s mailbox.

Variation #1

You have typed an invalid mailbox number.

Variation #2

2.7. CRCRC CarC Cardsds

The CRC card method is an effective design technique for discovering classes,

responsibilities, and relationships. A CRC card is simply an index card that describes one

class and lists its responsibilities and collaborators (dependent classes). Index cards are

a good choice for a number of reasons. They are small, thereby discouraging you from

piling too much responsibility into a single class. They are low-tech, so that they can be

used by groups of designers gathered around a table. They are more rugged than sheets

of paper and can be handed around and rearranged during brainstorming sessions.

The original article describing CRC cards is: Kent Beck and Ward Cunningham, “A

Laboratory for Teaching Object-Oriented Thinking”, OOPSLA ’89 Conference Proceedings

October 1–6, 1989, New Orleans, Louisiana. You can find an electronic version at

http://c2.com/doc/oopsla89/paper.html.

You make one card for each discovered class. Write the class name at the top of the card.

Below, on the left-hand side, you describe the responsibilities. On the right-hand side,

you list other classes that need to collaborate with this class so that it can fulfill its

responsibilities.

The CRC card shown in Figure 2 indicates that we have discovered three responsibilities

of the mailbox: to manage the passcode, to manage the greeting, and to manage new and

saved messages. The latter responsibility requires collaboration with the MessageQueue
class. That is, the mailbox needs to interact with MessageQueue objects in some unspecified

way.

The responsibilities should be at a high level. Don’t write individual methods. If a class

has more responsibilities than you can fit on the index card, you may need to make two

new cards, distribute the responsibilities among them, and tear up the old card. Between

one and three responsibilities per card is ideal.

In Step 3, the user enters an invalid extension number.1.1.

The voice mail system speaks.1.2.

Continue with Step 2.1.3.

After Step 4, the caller hangs up instead of speaking a message.2.1.

The voice mail system discards the empty message.2.2.

15For the students of Kelliher, Thomas <kelliher@goucher.edu>


