sched- desi gn- CFS. t xt Tue Mar 18 22:15:14 2014 1

This is the CFS schedul er.

80% of CFS' s design can be sumed up in a single sentence: CFS basically
nodel s an "ideal, precise nulti-tasking CPU'" on real hardware.

"Ideal nulti-tasking CPU' is a (non-existent :-)) CPUthat has 100%
physi cal power and which can run each task at precise equal speed, in
paral lel, each at 1/nr_running speed. For exanple: if there are 2 tasks
running then it runs each at 50% physical power - totally in parallel

On real hardware, we can run only a single task at once, so while that
one task runs, the other tasks that are waiting for the CPU are at a

di sadvantage - the current task gets an unfair anount of CPU tinme. In
CFS this fairness inbalance is expressed and tracked via the per-task
p->wait_runtinme (nanosec-unit) value. "wait_runtine" is the anount of
time the task should now run on the CPU for it to become conmpletely fair
and bal anced.

(snmall detail: on "ideal’ hardware, the p->wait_runtime val ue woul d
al ways be zero - no task would ever get ’'out of balance’ fromthe
"ideal’ share of CPUtine.)

CFS' s task picking logic is based on this p->wait_runtine value and it
is thus very sinple: it always tries to run the task with the | argest
p->wait_runtime value. In other words, CFS tries to run the task with
the 'gravest need’ for nore CPU tinme. So CFS always tries to split up
CPU time between runnable tasks as close to "ideal nultitasking

har dwar e’ as possi bl e.

Most of the rest of CFS' s design just falls out of this really sinple
concept, with a few add-on enbellishnents |ike nice |evels,
mul ti processing and various algorithmvariants to recogni ze sl eepers.

In practice it works like this: the systemruns a task a bit, and when
the task schedules (or a scheduler tick happens) the task’s CPU usage is
"accounted for': the (snall) tine it just spent using the physical CPU
is deducted fromp->wait _runtime. [minus the "fair share’ it would have
gotten anyway]. Once p->wait_runtinme gets | ow enough so that another
task becones the 'leftnost task’ of the time-ordered rbtree it maintains
(plus a small anbunt of ’'granularity’ distance relative to the |eftnost
task so that we do not over-schedul e tasks and trash the cache) then the
new | eftmost task is picked and the current task is preenpted.

The rqg->fair_clock value tracks the "CPU tinme a runnabl e task woul d have
fairly gotten, had it been runnable during that tine’. So by using
rg->fair_clock values we can accurately tinmestanp and neasure the
"expected CPU tine’' a task should have gotten. Al runnable tasks are
sorted in the rbtree by the "rqg->fair_clock - p->wait_runtine" key, and
CFS picks the 'leftnost’ task and sticks to it. As the system progresses
forwards, newy woken tasks are put into the tree nore and nore to the
right - slowmy but surely giving a chance for every task to becone the
"leftnost task’ and thus get on the CPU within a determ nistic anount of
time.

Sone i npl enmentation details:

- the introduction of Scheduling Cl asses: an extensible hierarchy of
schedul er nmodul es. These nodul es encapsul ate schedul i ng policy
details and are handl ed by the schedul er core w thout the core
code assum ng about themtoo nuch.

- sched _fair.c inplenents the ' CFS desktop scheduler’: it is a

sched- desi gn- CFS. t xt Tue Mar 18 22:15:14 2014 2

repl acenent for the vanilla scheduler’s SCHED OTHER i nteractivity
code.

I"d like to give credit to Con Kolivas for the general approach here:
he has proven via RSDL/SD that 'fair scheduling’ is possible and that
it results in better desktop scheduling. Kudos Con

The CFS patch uses a conpletely different approach and inplenentation
fromRSDL/SD. My goal was to make CFS' s interactivity quality exceed
that of RSDL/SD, which is a high standard to neet :-) Testing
feedback is welcone to decide this one way or another. [and, in any
case, all of SD's logic could be added via a kernel/sched sd.c nodul e
as well, if Conis interested in such an approach.]

CFS' s design is quite radical: it does not use runqueues, it uses a
tinme-ordered rbtree to build a "tinmeline’ of future task execution
and thus has no "array switch’ artifacts (by which both the vanilla
schedul er and RSDL/ SD are affected).

CFS uses nanosecond granularity accounting and does not rely on any
jiffies or other HZ detail. Thus the CFS schedul er has no notion of
"timeslices’ and has no heuristics whatsoever. There is only one
central tunable (you have to switch on CONFI G_SCHED DEBUG) :

/ proc/ sys/ kernel / sched_granul arity_ns

whi ch can be used to tune the scheduler from'desktop’ (I ow

| atencies) to 'server’ (good batching) workloads. It defaults to a
setting suitable for desktop workl oads. SCHED BATCH i s handl ed by the
CFS schedul er nodul e too.

Due to its design, the CFS scheduler is not prone to any of the
"attacks’ that exist today against the heuristics of the stock
schedul er: fiftyp.c, thud.c, chew.c, ring-test.c, massive_intr.c al
work fine and do not inpact interactivity and produce the expected
behavi or.

the CFS schedul er has a nmuch stronger handling of nice |levels and
SCHED BATCH: both types of workloads should be isolated nmuch nore
agressively than under the vanilla schedul er

(anot her detail: due to nanosec accounting and tineline sorting,
sched _yield() support is very sinple under CFS, and in fact under
CFS sched_yi el d() behaves nuch better than under any ot her
schedul er i have tested so far.)

- sched_rt.c inplements SCHED FI FO and SCHED RR semantics, in a sinpler
way than the vanilla schedul er does. It uses 100 runqueues (for al
100 RT priority levels, instead of 140 in the vanilla schedul er)
and it needs no expired array.

- reworked/sanitized SWMP | oad- bal anci ng: the runqueue-wal ki ng
assunptions are gone fromthe | oad-bal anci ng code now, and
iterators of the scheduling nodul es are used. The bal anci ng code got
quite a bit sinpler as a result.

G oup schedul er extension to CFS

Nornal |y the schedul er operates on individual tasks and strives to provide
fair CPUtine to each task. Sonetinmes, it may be desirable to group tasks
and provide fair CPU tinme to each such task group. For exanple, it nmay

sched- desi gn- CFS. t xt Tue Mar 18 22:15:14 2014 3

be desirable to first provide fair CPUtine to each user on the system
and then to each task belonging to a user

CONFI G_FAI R_GROUP_SCHED strives to achieve exactly that. It lets

SCHED NORMAL/ BATCH t asks be be grouped and divides CPU tinme fairly anong such
groups. At present, there are two (nutually exclusive) nechanisns to group
tasks for CPU bandw dth control purpose:

- Based on user id (CONFI G_FAI R_USER SCHED)
In this option, tasks are grouped according to their user id.
- Based on "cgroup"” pseudo filesystem (CONFI G_FAI R_CGROUP_SCHED)
This options lets the admi nistrator create arbitrary groups
of tasks, using the "cgroup" pseudo filesystem See
Docunent ati on/ cgroups.txt for nore informati on about this
filesystem

Only one of these options to group tasks can be chosen and not both.
Group schedul er tunabl es:

Wien CONFI G FAIR_USER SCHED is defined, a directory is created in sysfs for
each new user and a "cpu_share" file is added in that directory.

cd /sys/kernel /uids

cat 512/ cpu_share # Display user 512’'s CPU share
1024

echo 2048 > 512/ cpu_share # Modify user 512's CPU share
cat 512/ cpu_share # Di splay user 512’s CPU share
2048

#

CPU bandwi dt h between two users are divided in the ratio of their CPU shares.
For ex: if you would Iike user "root" to get tw ce the bandw dth of user
"guest", then set the cpu_share for both the users such that "root"'s
cpu_share is twice "guest"'s cpu_share

Wien CONFI G_FAI R_CGROUP_SCHED is defined, a "cpu.shares" file is created
for each group created using the pseudo filesystem See exanple steps
below to create task groups and nodify their CPU share using the "cgroups"”
pseudo fil esystem

nkdi r /dev/cpuctl

mount -t cgroup -ocpu none /dev/cpuctl

cd /dev/cpuctl

nkdir mul timedi a # create "nultinmedia" group of tasks
nkdi r browser # create "browser" group of tasks

#Configure the multimedia group to receive twi ce the CPU bandw dth
#t hat of browser group

echo 2048 > nul ti nedi a/ cpu. shares
echo 1024 > browser/cpu. shares

firefox & # Launch firefox and nove it to "browser" group
echo <firefox_pid> > browser/tasks

#Launch gnpl ayer (or your favourite novie player)
echo <novi e _player _pid> > nul ti nedi a/tasks

TR W ORE O W

