
Problem Set 10

CS 311

Due Feb. 24, 2014

Due at the beginning of class in hardcopy.
Sections 5.4–6

1. Consider this code example for allocating and releasing processes:

#define MAX_PROCESSES 255

int numberOfProcesses = 0;

/* the implementation of fork() calls this function */

int allocateProcess() {

int newPid;

if (numberOfProcesses == MAX_PROCESSES)

return -1;

else {

/* allocate necessary process resources */

++ numberOfProcesses;

return newPid;

}

}

/* the implementation of exit() calls this function */

void releaseProcess() {

/* release process resources */

--numberOfProcesses;

}

(a) Identify the race condition(s).

(b) Assume that you have a mutex lock named mutex with the operations acquire() and
release(). Indicate where the locking needs to be placed to prevent the race condi-
tion(s).

2. Explain why implementing synchronization primitives by disabling interrupts is not appropri-
ate in a single processor system if the synchronization primitives are to be used in user-level
programs.

3. Consider how to implement a mutex lock using an atomic hardware instruction. Assume that
the following structure defining the mutex lock is available:

1



typedef struct {

int unavailable;

} lock;

(unavailable == 0) indicates that the lock is available, and a value of 1 indicates that
the lock is unavailable. Using this struct, illustrate how the following functions can be
implemented using the test_and_set() instruction:

• void acquire(lock *mutex)

• void release(lock *mutex)

Be sure to include any initialization that may be necessary.

2


