
Project 4: Synchronization

CS 311

For this project, you’ll implement variations of two of the classic synchronization problems: Dining
Philosophers and The Sleeping Barber. You’ll use Pthreads mutex and condition variables in
your implementation of the Dining Philosophers problem and POSIX unnamed semaphores in your
implementation of the Sleeping Barber problem. Your solutions will be thread-based.

References

The following are all available on, or linked to from, the course web site, or in the textbook:

1. Dining Philosophers Solution Using Monitors, Section 5.8.2 of the textbook. Note that this
is a monitor-based solution, so it will require some modification — the addition of mutual
exclusion for critical sections and the use of while loops with condition variables, rather than
if statements.

2. The Sleeping Barber Problem. Includes a semaphore-based solution.

3. Pthreads Synchronization, Section 5.9.4 of the textbook for introductory material on Pthreads
mutex and condition variables, and POSIX unnamed semaphores.

4. Project 1 and Project 2 in Chapter 5, on pp. 251–253, for useful background information.

5. semaphore.c — A concise illustration of POSIX semaphore functions in Linux.

6. producerConsumer.c — An illustration of Pthreads operations in Linux, including thread
creation, parameter passing, join, and mutex and condition variable operations.

7. helloThreaded.c — An illustration of how to manage a fair number of threads using a
pthread_t array.

Code Structure for an Actor

This illustrates the basic structure of a philosopher, barber, customer, etc. thread that requests or
performs some service at various intervals. Because this is an infinite loop, you’ll need to terminate
your programs by typing Ctrl-c.

/* Remember to inlude the Pthreads library when compiling:

*

* gcc -o foo foo.c -lpthread

*/

/* Include files */

1



#include <stdio.h>

#include <pthread.h>

#include <unistd.h>

#include <stdlib.h>

#include <assert.h>

/* Function prototypes */

void delay(unsigned int *seed, unsigned int min, unsigned int max);

void *actor1(void * ptr);

/* Sleep a random amount of time between min and max seconds. */

void delay(unsigned int *seed, unsigned int min, unsigned int max)

{

/* assert() terminates the program if its condition is false. */

assert(min <= max);

sleep((unsigned int) (min + (rand_r(seed) % (max - min + 1))));

}

void *actor1(void * ptr)

{

long tid = (long) ptr;

/* Each thread needs its own private seed for the pseudo-random

* number generator.

*/

unsigned int seed = tid;

while (1)

{

/* Simulate action 1 by sleeping. */

printf("Action 1\n");

delay(&seed, 3, 8);

/* Some synchronization here. */

/* Simulate action 2 by sleeping. */

printf("Action 2\n");

delay(&seed, 0, 10);

/* More synchronization here. */

/* etc. */

}

}

int main()

{

pthread_t actor;

2



pthread_create(&actor, NULL, actor1, (void *) 1l);

pthread_join(actor, NULL);

return 0;

}

Dining Philosophers

Implement a mutex and condition variable-based solution to Dining Philosophers, based upon the
monitor-based pseudo-code given in Section 5.8.2 of the textbook. Using a turn variable, ensure
that starvation is avoided in your implementation, without unduly causing the other philosophers
to go hungry. (I.e., if it’s philosopher 3’s turn and philosopher 3 is thinking, philosophers 2 and 4
shouldn’t be prevented from eating.) Once the philosopher whose turn it is finally eats, it’s the
next philosopher’s turn, where “next” is used in a circular way.

Because of the real possibility of spurious signal operations, ensure that your condition variable
wait operations are “guarded” by while statements.

The Sleeping Barber

Implement a POSIX unnamed semaphores-based solution to The Sleeping Barber, using the pseudo-
code in the The Sleeping Barber Problem reference document as a starting point. The town in which
the barber cuts hair has one Very Important Person (VIP). When the VIP visits the barber, he gets
preferential service — he doesn’t preempt a customer receiving a haircut at the time he arrives,
nor does he cause a fifth waiting customer to relinquish his seat, but he will always be the next
customer to receive a haircut. The barber thread should contain logic and printf() statements to
indicate when the barber has no customers and will therefore go to sleep. Finally, use a semaphore,
controlled by the barber, to explicitly force a rendezvous between the barber and the customer/VIP
receiving a haircut.

Assume that a customer’s haircut takes one second, but that the VIP’s haircut takes two sec-
onds. The VIP needs a new haircut five seconds after the previous haircut. Ordinary customer i

needs a new haircut i + 2 seconds after the previous visit to the barbershop.
To demonstrate your logic, run your program with two ordinary customers, demonstrating that

the barber sleeps occasionally. Then, run your program with 10 ordinary customers, demonstrating
that sometimes customers leave without getting a haircut, that the VIP receives priority treatment,
and that the barber doesn’t sleep when customers are waiting.

Deliverables

The following files should be uploaded to the course GoucherLearn site by 5:00 pm on the due date:

1. Your source code files. Your source code should contain a sufficient number of informative
printf() calls so that I can easily understand what’s happening as your program runs. Do

not include any binary files.

2. A README file. This file should list any functionality missing from your project, and list
the names of all the files that you’ve uploaded, along with a very brief description of each
file. It should include compilation, link, and run instructions. For each of the two problems,
include easy-to-read-and-understand pseudo-code of your implementation.

3


