
Simple User Solutions to the C. S. Problem

Tom Kelliher, CS 311

Mar. 21, 2012

Announcements:

From last time:

1. Introduction to process synchronization.

Outline:

1. Software solutions for two processes.

2. Software solution for n processes.

Assignment:

1 Software Solutions

1.1 Two Process Solutions

Assumptions:

1. Only two cooperating processes.

2. We have P0 and P1.

3. Replace i with appropriate integer.

1



1.1.1 Try 1

int turn = 0; // Shared control variable.

// mutexbegin:

while (turn != i)

; // Busy wait.

// mutexend:

turn = 1 - i;

1. Guarantees mutual exclusion.

2. Does not guarantee progress — enforces strict alternation of processes entering CS’s.

3. Bounded waiting violated — suppose one process terminates while its its turn?

1.1.2 Try 2

Remove strict alternation requirement.

int flag[2] = { FALSE, FALSE } // flag[i] indicates that Pi is in its

// critical section.

// mutexbegin:

while (flag[1 - i])

;

flag[i] = TRUE;

// mutexend:

flag[i] = FALSE;

1. Mutual exclusion violated.

2. Progress ok.

3. Bounded waiting?

2



1.1.3 Try 3

Restore mutual exclusion.

int flag[2] = { FALSE, FALSE } // flag[i] indicates that Pi wants to

// enter its critical section.

// mutexbegin:

flag[i] = TRUE;

while (flag[1 - i])

;

// mutexend:

flag[i] = FALSE;

1. Guarantees mutual exclusion.

2. Violates progress — both processes could set flag and then deadlock on the while.

3. Bounded waiting?

1.1.4 Try 4

Attempt to remove the deadlock.

int flag[2] = { FALSE, FALSE } // flag[i] indicates that Pi wants to

// enter its critical section.

// mutexbegin:

flag[i] = TRUE;

while (flag[1 - i])

{

flag[i] = FALSE;

delay; // Sleep for some time.

flag[i] = TRUE;

}

// mutexend:

flag[i] = FALSE;

3



1. Mutual exclusion guaranteed.

2. Progress violated (processes can “dance”).

3. Bounded waiting violated.

1.1.5 Peterson’s Algorithm

int flag[2] = { FALSE, FALSE } // flag[i] indicates that Pi wants to

// enter its critical section.

int turn = 0; // turn indicates which process has

// priority in entering its critical

// section.

// mutexbegin:

flag[i] = TRUE;

turn = 1 - i;

while (flag[1 - i] && turn == 1 - i)

;

// mutexend:

flag[i] = FALSE;

1. Satisfies all solution requirements. Why?

1.2 Multiple Process Solution

Lamport’s Bakery algorithm.

Assumptions:

1. NPROCS is the number of processes.

2. max(int *array) returns the maximum value in array.

3. Each process has a unique ID, so ties on the number chosen are broken by comparing
IDs.

4



4. Replace i with the appropriate process ID.

// Global initialization:

int choosing[NPROCS] = { FALSE };

int number[NPROCS] = { 0 };

// mutexbegin:

choosing[i] = TRUE;

number[i] = max(number) + 1;

choosing[i] = FALSE;

for (j = 0; j < NPROCS; ++j)

{

while (choosing[j])

;

while (number[j] != 0 && (number[j] < number[i] ||

number[j] == number[i] && j < i) )

;

}

// mutexend:

number[i] = 0;

1. Is it correct?

2. What can happen to number? Is that likely?

5


