
Process Synchronization Mechanisms

Tom Kelliher, CS 311

Mar 19, 2012

Announcements:

From last time:

1. CPU scheduling.

Outline:

1. Critical sections and cooperating processes.

2. Cooperating processes (review).

3. A hardware solution to the C. S. problem.

4. Semaphores.

Assignment: Read Chapter 6.

1 Critical Sections and Cooperating Processes

What is a critical section?

The overlapping portion of cooperating processes, where shared variables are being
accessed .

1



Not all processes share variables: independent processes.

Cooperating/independent processes.

Necessary conditions for a solution to the c.s. problem:

1. Mutual Exclusion — if Pi is executing in one of its critical sections, no Pj, j 6= i, is
executing in its critical sections.

2. Progress — a process operating outside of its critical section cannot prevent other
processes from entering theirs; processes attempting to enter their critical sections
simultaneously must decide which process enters eventually.

3. Bounded Waiting — a process attempting to enter its critical region will be able to do
so eventually.

Assumptions:

1. No assumptions made about relative speed of processes

2. No process may remain in its critical section indefinitely (may not terminate in its
critical section)

3. A memory operation (read or write) is atomic — cannot be interrupted. For now, we
do not assume indivisible RMW cycles.

Classic example: the producer/consumer problem (aka bounded buffer):

Global data:

const int N = 10;

int buffer[N];

int in = 0;

int out = 0;

int full = 0;

int empty = N;

Producer:

2



while (1)

{

while (empty == 0)

;

buffer[in] = inData;

in = ++in % N;

--empty;

++full;

}

Consumer:

while (1)

{

while (full == 0)

;

outData = buffer[out];

out = ++out % N;

--full;

++empty;

}

Is there potential for trouble here?

1.1 Critical Section Usage Model

(for n processes, 1 ≤ i ≤ n)

Pi:

do {

mutexbegin(); /* CS entry */

CSi;

mutexend(); /* CS exit */

non-CS

} while (!done);

3



1.2 A Simple, Primitive Hardware Solution

1. Just disable interrupts.

2. Umm, what about user processes?

3. Why this doesn’t work with multiprocessors.

4. This is dangerous.

2 Cooperating Processes

1. Must cooperating processes synchronize under all conditions? (Don’t forget single
writer performing atomic writes/multiple readers.)

2. What does atomic mean?

3. Recall necessary and sufficient conditions: Mutual exclusion, progress, and bounded
waiting.

3 A Hardware Solution: TAS Instruction

TAS: Test And Set. Semantics:

int TAS(int& val)

{

int temp;

temp = val; // Body performed atomically.

val = 1;

return temp;

}

A partial solution to the critical section problem for n processes:

4



// Initialization

int lock = 0;

void MutexBegin()

{

while (TAS(lock)) // Ugh. A spin lock.

;

}

void MutexEnd()

{

lock = 0;

}

Prove that this is a solution to the C. S. problem.

4 Semaphores

1. Created by Dijkstra (Dutch)

2. A semaphore is an integer flag, indicating that it is safe to proceed.

3. Two operations:

(a) Wait (p) — proberen, test:

wait(s) {

while (s == 0)

;

s--;

}

Test and (possible) decrement executed atomically (usually achieved through
hardware means).

(b) Signal (v) — verhogen, increment:

5



signal(s) {

s++;

}

(c) Why not resort to hardware methods?

4. These are operations provided by the kernel. Wait and signal are atomic operations.

4.1 Critical Section Problem Solution

1. Critical section solution:

semaphore mutex = 1;

mutexbegin: wait(mutex);

mutexend: signal(mutex);

(a) Mutual exclusion is achieved: consider a contradiction.

(b) Progress is achieved: someone got the semaphore.

(c) Bounded waiting depends on how the wait queue is implemented (if at all).

4.2 Usage Examples

1. Interrupt signalling:

semaphore sig = 0;

int_hndl:

signal(sig);

driver:

startread();

wait(sig);

6



2. Process synchronization:

semaphore flag = 0;

process1()

{

p1Part1(); // This will complete before p2part2() begins.

signal(flag);

p1Part2();

}

process2()

{

p2part1();

wait(flag);

p2part2();

3. Resource management (pool of buffers)

Producer/Consumer problem:

semaphore count = N;

semaphore mutex = 1;

getbuf:

wait(count); /* order important here */

wait(mutex);

<grab unallocated buffer>

signal(mutex);

return(buffer);

relbuf:

wait(mutex);

<release buffer>

signal(mutex);

signal(count);

4.3 A Better Semaphore

1. Above semaphores inefficient — spinlocks. Let waits which cause busy waits actually
block the process:

7



call scheduler

Ready Running

Blocked

Dispatched

wait(s<=0)
signal(s)

Pre-empted

Possibly

Associate a “blocked” queue with each semaphore.

typedef struct semaphore {

int value;

pcb *head;

}

Semaphore creation:

semaphore *createsem(int value) {

semaphore *sem;

sem = get_next_sem();

sem->value = value;

sem->head = NULL;

return (sem);

}

void wait(semaphore *sem) { /* need mutex goo here */

if (--sem->value < 0) {

<update status of current process>

insqu(sem->head->prev, current);

scheduler();

}

}

void signal(semaphore *sem) { /* mutex */

pcb *proc;

8



if (++sem->value <= 0) {

proc = remqu(sem->head->next);

<update status of proc>

ordinsqu(ready, proc);

if (proc->prio > current->prio)

scheduler();

}

}

9


