
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 1: Introduction

1.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Administrivia

 Reading: Chapter 1.

 Next time: Continued “Grand Tour.”

1.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Outline

 Common computer system devices.

 Parallelism within an operating system.

 Interrupts.

 Storage operation, hierarchy, and caching.

 Types of multiprocessor systems.

 Multiprogramming.

 Kernel and user modes.

1.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through common bus
providing access to shared memory

 Concurrent execution of CPUs and devices competing for memory
cycles

1.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Computer-System Operation

 I/O devices and the CPU can execute concurrently

 Each device controller is in charge of a particular device type

 Each device controller has a local buffer

 CPU moves data from/to main memory to/from local buffers

 I/O is from the device to local buffer of controller

 Device controller informs CPU that it has finished its operation by causing
an interrupt

1.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine generally, through
the interrupt vector, which contains the addresses of all the service
routines

 Interrupt architecture must save the address of the interrupted instruction

 Incoming interrupts are disabled while another interrupt is being processed
to prevent a lost interrupt

 A trap is a software-generated interrupt caused either by an error or a user
request

 An operating system is interrupt driven

1.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interrupt Handling

 The operating system preserves the state of the CPU by storing registers
and the program counter

 Determines which type of interrupt has occurred:

 polling

 vectored interrupt system

 Separate segments of code determine what action should be taken for each
type of interrupt

1.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interrupt Timeline

1.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

I/O Structure

 After I/O starts, control returns to user program only upon I/O
completion
 Wait instruction idles the CPU until the next interrupt
 Wait loop (contention for memory access)
 At most one I/O request is outstanding at a time, no

simultaneous I/O processing
 After I/O starts, control returns to user program without waiting

for I/O completion
 System call – request to the operating system to allow user

to wait for I/O completion
 Device-status table contains entry for each I/O device

indicating its type, address, and state
 Operating system indexes into I/O device table to determine

device status and to modify table entry to include interrupt

1.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit information at close to
memory speeds

 Device controller transfers blocks of data from buffer storage directly to
main memory without CPU intervention

 Only one interrupt is generated per block, rather than the one interrupt per
byte

1.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Storage Structure

 Main memory – only large storage media that the CPU can access directly

 Secondary storage – extension of main memory that provides large
nonvolatile storage capacity

 Magnetic disks – rigid metal or glass platters covered with magnetic
recording material

 Disk surface is logically divided into tracks, which are subdivided into
sectors

 The disk controller determines the logical interaction between the
device and the computer

1.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Storage Hierarchy

 Storage systems organized in hierarchy

 Speed

 Cost

 Volatility

 Caching – copying information into faster storage system; main memory
can be viewed as a last cache for secondary storage

1.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Storage-Device Hierarchy

1.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Caching

 Important principle, performed at many levels in a computer (in
hardware, operating system, software)

 Information in use copied from slower to faster storage temporarily

 Faster storage (cache) checked first to determine if information is
there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

1.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Computer-System Architecture

 Most systems use a single general-purpose processor (PDAs through
mainframes)

 Most systems have special-purpose processors as well

 Multiprocessors systems growing in use and importance

 Also known as parallel systems, tightly-coupled systems

 Advantages include

4 Increased throughput

4 Economy of scale

4 Increased reliability – graceful degradation or fault tolerance

 Two types

1. Asymmetric Multiprocessing

2. Symmetric Multiprocessing

1.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

How a Modern Computer Works

1.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Symmetric Multiprocessing Architecture

1.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A Dual-Core Design

1.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Clustered Systems

 Like multiprocessor systems, but multiple systems working together

 Usually sharing storage via a storage-area network (SAN)

 Provides a high-availability service which survives failures

 Asymmetric clustering has one machine in hot-standby mode

 Symmetric clustering has multiple nodes running applications,
monitoring each other

 Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

1.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Structure

 Multiprogramming needed for efficiency
 Single user cannot keep CPU and I/O devices busy at all times
 Multiprogramming organizes jobs (code and data) so CPU always has

one to execute
 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling
 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches
jobs so frequently that users can interact with each job while it is running,
creating interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory process
 If several jobs ready to run at the same time CPU scheduling
 If processes don’t fit in memory, swapping moves them in and out to

run

 Virtual memory allows execution of processes not completely in
memory

1.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Layout for Multiprogrammed System

1.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating-System Operations

 Interrupt driven by hardware
 Software error or request creates exception or trap

 Division by zero, request for operating system service
 Other process problems include infinite loop, processes modifying each

other or the operating system
 Dual-mode operation allows OS to protect itself and other system

components
 User mode and kernel mode
 Mode bit provided by hardware

 Provides ability to distinguish when system is running user code or
kernel code

 Some instructions designated as privileged, only executable in
kernel mode

 System call changes mode to kernel, return from call resets it to user

1.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources

 Set interrupt after specific period

 Operating system decrements counter

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate program
that exceeds allotted time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

