
Processes and Threads

Tom Kelliher, CS 311

Feb. 20, 2012

Announcements:

Exam in one week.

From last time:

1. Adding a syscall to the kernel.

Outline:

1. Syscall assignment.

2. Processes.

3. Threads.

1 Process Resources

1. Program in execution.

2. Serial, ordered execution within a single process. (Contrast task with multiple threads .)

3. “Parallel” unordered execution between processes.

Three issues to address

1



1. Specification and implementation of processes — the issue of concurrency (raises the
issue of the primitive operations).

2. Resolution of competition for resources: CPU, memory, I/O devices, etc.

3. Provision for communication between processes.

1.1 Process States

Three possible states for a process:

• Running — currently being executed by the processor

• Ready — waiting to get the processor

• Blocked (waiting) — waiting for an event to occur: I/O completion, signal, etc. (Sus-
pended — ready to run but not eligible.)

Expires

Ready Running

Blocked

Process

Creation

Process

Termination

Waiting

on Event

Event

Scheduled

Occurs

Quantum

How many in each state?

1.2 A Process’ Resources

Kept in a process control block (PCB) for each process:

2



1. Code (possibly shared among processes).

2. Execution stack — stack frames.

3. CPU state — general purpose registers, PC, status register, etc.

4. Heap — dynamically allocated storage.

5. State — running, ready, blocked, zombie, etc.

6. Scheduling information — priority, total CPU time, wall time, last burst, etc.

7. Memory management — page, segment tables.

8. I/O status — devices allocated, open files, pending I/O requests, postponed resource
requests (deadlock avoidance).

9. Accounting — owner, CPU time, disk usage, parent, child processes, etc.

Contrast program.

PCB updated during context switches (kernel in control).

Should a process be able to manipulate its PCB?

2 Process Scheduling

Determination of which process to run next (CPU scheduling).

Multiple queues for holding processes:

1. Ready queue — priority order.

2. I/O queues — request order.

Consider a disk write:

(a) Syscall.

3



(b) Schedule the write.

(c) Modify PCB state, move to I/O queue.

(d) Call short term scheduler to perform context switch.

Is it necessary to wait on a disk write?

3. Event queues — waiting on child completion, sleeping on timer, waiting for request
(inetd).

Three types of schedulers:

• Long term scheduler.

• Medium term scheduler.

• Short term (CPU) scheduler.

2.1 Long Term Scheduler

Determines overall job mix:

1. Balance of I/O, CPU bound jobs.

2. Attempts to maximize CPU utilization, throughput, or some other measure.

3. Runs infrequently.

2.2 Medium Term Scheduler

Cleans up after poor long term scheduler decisions:

1. Over-committed memory — thrashing.

4



2. Determines candidate processes for suspending and paging out.

3. Decreases degree of multiprogramming.

4. Runs only when needed.

2.3 CPU Scheduler

Decides which process to run next :

1. Picks among processes in ready queue.

2. Priority function.

3. Runs frequently — must be efficient.

3 Context Switching

Time line schematic:

Ditto

Process A
(User Mode
Operation)

Kernel Mode
Operations

Process B
(User Mode
Operation)

Event Handler,

CPU Scheduler

Events

5



4 Operations on Processes

4.1 Process Creation

Parent, child.

Where does the child’s resources come from? By “resources” we mean:

1. Stack.

2. Heap.

3. Code.

4. Environment — environment variables, open files, devices, etc.

Design questions:

• New text, same text?

• Make a copy of the memory areas? (Expensive.)

• Copy the environment?

• How are open files handled?

Solutions to the “copy the parent’s address space” problem:

1. Copy on write — Mark all parent’s pages read only and shared by parent & child.
On any attempted write to such a page, make a copy and assign it to child. Fix page
tables.

2. vfork — No copying at all. It is assumed that child will perform an exec, which
provides a private address space.

6



5 Threads

Heavyweight process — expensive context switch.

Thread:

1. Lightweight process.

2. Consist of PC, general purpose register state, stack.

3. Shares code, heap, resources with peer threads.

4. Easy context switches.

Task: peer threads, shared memory and resources.

Can peer threads scribble over each other?

What about non-peer threads?

User-level threads:

1. Implemented in user-level libraries; no system calls.

2. Kernel only knows about the task.

3. Threads schedule themselves within task.

4. Advantage: fast context switch.

5. Disadvantages:

(a) Unbalanced kernel level scheduling.

(b) If one thread blocks on a system call, peer threads are also blocked.

Kernel-level threads:

7



1. Kernel knows of individual threads.

2. Advantage: If a thread blocks, its peers can still proceed.

3. Disadvantage: Slower context switch (kernel involved).

How do threads compare to processes?

1. Context switch time.

2. Shared data space. (Improved throughput for file server: shared data, quicker re-
sponse.)

5.1 Example: Solaris 2

User-level threads multiplexed upon lightweight processes:

Multiple CPUs

Task

User-Level
Threads

LWPs

Kernel-Level
Threads

6 IPC Mechanisms

Basics: send(), receive() primitives.

Design Issues:

1. Link establishment mechanisms:

8



(a) Direct or indirect naming.

(b) Circuit or no circuit.

2. More than two processes per link (multicasting).

3. Link buffering:

(a) Zero capacity.

(b) Bounded capacity.

(c) Infinite capacity.

4. Variable- or fixed-size messages.

5. Unidirectional or bidirectional links (symmetry).

6. Resolving lost messages.

7. Resolving out-of-order messages.

8. Resolving duplicated messages.

6.1 Mailboxes — An Indirect Communication Mechanism

Resources owned by kernel.

Messages kept in a queue.

Assume:

1. Only allocating process may execute receive.

2. Any process (including “owner”) may send.

3. Variable-sized messages.

9



4. Infinite capacity.

Primitives:

1. int AllocateMB(void)

2. int Send(int mb, char* message)

3. int Receive(int mb, char* message)

4. int FreeMB(int mb)

6.1.1 Example: Process Synchronization

Consider:

Process1()

{

...

S1;

...

}

Process2()

{

...

S2;

...

}

How can we guarantee that S1 executes before S2?

6.1.2 Example: Tape Drive Allocation and Use

The situation:

10



Tamb

P1

P2

Pn

P1mb

. . .

Tape Allocator

Tape Drives

Free List,
Allocation List

Tape allocator process:

initialize();

while (1)

{

Receive(Tamb, message);

if (message is a request)

if (there are enough tape drives)

for each tape drive being allocated

{

fork a handler daemon;

send daemon mb # in message to requesting process;

update lists;

}

else

send a rejection message;

else if (message is a return)

{

update lists;

send an ack message;

}

else

11



ignore illegal messages;

}

Summary of user process actions:

1. Send request to tape allocator.

2. Receive message back giving mailbox(es) to use in communicating with tape drive(s).

3. Start sending/receiving with tape drive daemon(s).

4. Close tape drives.

5. Send message to tape allocator returning tape drive(s).

12


