
Memory Management II

Tom Kelliher, CS 318

Apr. 13, 2012

1 Administrivia

Announcements

Assignment

See reading assignment on class web site.

From Last Time

Memory Management I.

Outline

1. Non-contiguous allocation.

2. Paging.

3. Segmentation.

Coming Up

Linux kernel modules.

1



2 Non-Contiguous Allocation

Problems with contiguous allocation:

1. Problems with fixed partitions:

(a) Limited degree of multiprogramming.

(b) Internal fragmentation.

(c) Placement policies.

2. Problems with variable partitions:

(a) External fragmentation, compaction.

(b) Swapping is difficult, if not impossible (address binding).

Alternative: non-contiguous allocation.

3 Paging

The idea:

1. Entire process in memory.

2. Partition memory into frames of size 2m.

(a) Typical frame sizes: 512 to 8K bytes.

(b) Frame size constrained by MMU design.

3. Logical address space is broken into pages.

(a) Page size = frame size.

2



(b) Pages can be arbitrarily mapped onto frames.

(c) However, process “sees” a contiguous, flat address space.

4. MMU splits logical address:

(a) Assume logical address is n bits.

(b) Page number field is n−m most significant bits.

(c) Page offset field is m least significant bits.

(d) Using table look-up, convert logical page number to physical frame number.

(e) Frame offset = page offset.

Why is frame, page size a power of two?

Paging hardware:

Frames

Number Offset
PagePage

Frame
Number

. . .

. . .

Page Table

Index into
Page Table

Frame
Number

Frame
Offset

Memory

Physical
Address

CPU

Logical
Address

MMU

m bits

n-m bits

. . .

Design issues:

3



1. Page size:

(a) Internal fragmentation.

(b) Maximizing I/O transfer rate.

2. I/O — process passes logical address to kernel.

3. Implementation of the page table.

(a) Small register file.

(b) Array in memory.

4. Issues for memory implementation:

(a) Page table must be in contiguous memory.

(b) Page table base register.

(c) “Logical memory access” requires two physical accesses.

i. Translation look-aside buffer.

ii. TLB entries contain: Page number, frame number pairs.

iii. Issue: Context switches.

iv. Only a few entries needed.

4



. . .

Page Table

Number Offset
PagePage Frame

Number
Frame
Offset

Memory

Physical
Address

CPU

Logical
Address

MMU

m bits

n-m bits

. . .

TLB

. . .

TLB
Hit

Page Table
Base Reg.

+

TLB
Miss

3.1 Size, Structure of Page Table

1. Problem: huge page tables. How did this happen?

2. Solutions:

(a) Valid/invalid bit.

(b) Page table limit register.

(c) Multi-level paging.

3.1.1 Multi-Level Paging

Why not just use the limit register?

A two-level paging scheme for a 32-bit logical address:

5



Page Tables

Level 1 Level 2 Page
Offset

12 bits1010

Page Number Page Number

Page Table
Base Reg +

. . .

+

Logical Address

Physical
Address

Level 1
Page Table Level 2

Is the page table really any smaller?

What does this solve?

1. Non-contiguous (paged) page table.

2. “Holes” in page table (valid bit) shrink it.

Sun SPARC: 3 level paging.

64-, 128-bit logical addresses?

3.2 Protection

1. Is it possible for a process to access an arbitrary memory location?

2. Using valid bit to introduce “holes” into logical address space.

6



3.3 Page Sharing

1. What can be shared?

2. Read-only pages.

3. Page alignment — segment the logical address space.

4. Page de-allocation.

4 Segmentation

1. “Object oriented” approach:

(a) User views program as a set of objects:

i. Stack.

ii. Routines.

iii. Arrays.

iv. ...

(b) Each object stored in a segment.

2. Generalization of paging.

3. Logical address is a segment “name” and an offset.

4. Variable-sized “page” having a base and length.

5. Frames start on 2m memory boundaries. Segments start anywhere. Therefore, must
add a segment base and offset.

6. Straight paging: external fragmentation.

7. Solution: Paged segmentation (x86 architecture).

7



Segmentation hardware:

. . .

Number Offset
Seg.Seg.

. . .

. . .

Index into
Segment Table

Memory

Physical
Address

CPU

Logical
Address

MMU

Frames

+

Limit

Base

> TrapSegment Table

8


