
Deadlock II

Tom Kelliher, CS 311

Apr. 2, 2012

1 Administrivia

Announcements

Exam in one week.

Assignment

From Last Time

Deadlock I.

Outline

1. Deadlock detection and recovery.

2. Deadlock avoidance.

3. Summary.

Coming Up

Linux kernel modules.

1



2 Deadlock Detection and Recovery

1. Permit deadlocks to occur, subsequently recover from them.

2. Periodically run deadlock detection routines.

3. Choose victim processes.

2.1 Deadlock Detection

Algorithmic deadlock detection:

1. n processes.

2. m resource types .

3. Available — vector of length m.

4. Allocation — matrix of size n by m. Rows: processes; columns: resources.

5. Request — matrix of size n by m.

6. Finish — vector of length n.

7. Work — vector of length m.

The algorithm:

work = available;

for (i = 0; i < n; ++i)

finish[i] = false;

while there is an i such that finish[i] == false

and request[i] <= work

{

finish[i] = true;

work = work + allocation[i];

}

2



1. Running time?

2. How often should this be run? What are the tradeoffs?

3. Any processes for which finish is false are deadlocked.

Using a resource allocation graph to detect deadlock (5 processes, 3 resource types):

Available =
[

0 0 0
]

Allocation =

















0 1 0
2 0 0
3 0 3
2 1 1
0 0 2

















Request =

















0 0 0
2 0 2
0 0 0
1 0 0
0 0 2

















Retry with this request matrix:

Request =

















0 0 0
2 0 2
0 0 1
1 0 0
0 0 2

















2.2 Deadlock Recovery

Some recovery mechanisms:

1. Terminate all deadlocked processes. What about threads (say only some of the threads
in a task are deadlocked)?

3



2. Terminate processes one at a time.

(a) How do you choose the victim?

(b) When do you stop terminating victims?

3. “Rolling back” a process and preempting resources.

(a) Process termination is drastic and messy.

(b) Checkpoints.

(c) How much state has to be checkpointed?

(d) Starvation.

3 Deadlock Avoidance

Always maintain the system in a safe state:

Safe State

Unsafe
State

Deadlock

Grant a resource request only if resulting state is safe.

Safe state:

4



1. There exists a sequence in which all resource requests can be satisfied.

2. The operating system is in control of the resource situation.

Unsafe state:

1. The operating system is no longer in control of the resource situation.

2. Processes are in control and can cause a deadlock.

Banker’s algorithm used to maintain safe state.

Additional matrix required: Claim — maximum number of each resource type needed by
each process.

For each resource request which can be satisfied

{

simulate:

satisfy the request;

update state matrices;

turn all remaining claims into requests;

test for deadlock;

if simulation resulted in deadlock

defer the request;

else

grant the request;

}

3.1 Example

Assume a maximum-claim serially reusable system with four processes and three resource
types. The claim matrix is given by

C =











4 1 4
3 1 4
5 7 13
1 1 6











,

5



where Ci,j denotes the maximum claim of process i for resource j. The total units of each
resource type are given by the vector (5 8 16). The allocation of resources is given by the
matrix

A =











0 1 4
2 0 1
1 2 1
1 0 3











,

where Ai,j denotes the number of units of resource j that are allocated to process i.

1. Determine if the current state of the system is safe.

2. Determine if granting a request by process 1 for 1 unit of resource 1 can be safely
granted.

3. Determine if granting a request by process 3 for 6 units of resource 3 can be safely
granted.

4 Summary

1. Some resources are easy to keep out of deadlock: CPU cycles, memory.

2. No one “silver bullet” — must combine mechanisms.

3. Must tradeoff between cost of protection and cost of deadlock.

6


