Graphics Systems and Models

Tom Kelliher, CS 320

Feb. 2, 2011

1 Administrivia

Announcements

Assignment

Read 2.1-4.

From Last Time

Outline

1. CG Applications.
2. Graphics Systems Components.
3. Objects and Images.
4. Vision.
5. Pinhole and Synthetic Cameras.
6. Graphics Pipeline.

Coming Up

OpenGL introduction lab.

2 CG Applications

1. Entertainment: Lord of the Rings, Star Wars.
(a) Not real-time: can use model-render paradigm.
(b) Lots of off-line compute cycles. Good physics.
(c) High quality results.
2. Games: Quake, etc.
(a) Real-time, interactive.
(b) Lots of on-line compute cycles.
(c) Procedural physics: fast, not too accurate.

Real physics: lots of compute cycles (slow), accurate.
3. Simulation: Well, a surgical simulation is "like" a game.

3 Graphics System Components

Frame buffer attributes:

1. Unit: picture element (pixel).
2. Discretization process (rasterization): geometry info to raster (array or line of pixels).
3. Depth: $1,8,16,24$ bits.
4. Resolution: $640 \times 480,800 \times 600,1024 \times 768$, etc.

Aspect ratio.

4 Objects and Images

1. In any visualization process, painting, photography, etc., there are two key elements: object and viewer.

Object exists independently.
Its image is dependent upon view and other things such as light.
2. In CG, an image is composed of "polys" - usually triangles.

5 Vision

1. Human vision: rods (night) and cones (day).

Visual acuity: resolution.
Three types of cones, each most sensitive to a particular light frequency (blue, green, yellow).

Response is non-linear for one type of cone and non-uniform between cones.
2. CG uses three color system of linear combinations of monochromatic red, green, blue.

6 Pinhole and Synthetic Cameras

Consider the projection of an object of height h onto the focal plane of a pinhole camera:

f

1. What's the height of the image $\left(h^{\prime}\right)$?
2. What's the angle of the field of view?
3. Depth of field.
4. CG's synthetic camera adds a clipping rectangle to this basic set-up.
5. Independence of objects and camera.

7 Graphics Pipeline

1. 3-D points represented by four element vectors.
2. Transformations applied by multiplications by series of 4×4 matrices.
3. Stages:
(a) Transformer: rotate, shift, scale. Convert world coordinates to window coordinates.
(b) Clipper.
(c) Projector: 3-D to 2-D. Ortho, perspective views.
(d) Rasterizer.
