More Light on Light

Tom Kelliher, CS 320

Apr. 13, 2011

1 Administrivia

Announcements

Assignment

Read Chapter 6 (with heart!).

From Last Time

Introduction to light.

Outline

1. Review of twoWindowsOne.c and twoWindowsTwo.c.
2. Derivation of Phong lighting model.
3. Computing normal vectors.

Coming Up

Lighting lab.

2 The Phong Reflection Model

1. Consider an object point, \mathbf{p} and a light source \mathbf{p}_{i}.
2. Important vectors:

(a) l : vector to light source.
(b) n : surface normal.
(c) v : vector to COP.
(d) r : reflection vector.
3. The light from source to object can be described by:

$$
\mathbf{L}_{i}=\left[\begin{array}{lll}
L_{i r a} & L_{i g a} & L_{i b a} \\
L_{i r d} & L_{i g d} & L_{i b d} \\
L_{i r s} & L_{i g s} & L_{i b s}
\end{array}\right]
$$

(theoretically wrong but, in practice, right)
4. Using material properties, distance from source, orientation of surface and direction of source a reflection matrix can be constructed:

$$
\mathbf{R}_{i}=\left[\begin{array}{lll}
R_{i r a} & R_{i g a} & R_{i b a} \\
R_{i r d} & R_{i g d} & R_{i b d} \\
R_{i r s} & R_{i g s} & R_{i b s}
\end{array}\right]
$$

5. (Simplified) Illumination at \mathbf{p} :

$$
I=I_{a}+I_{d}+I_{s}=L_{a} R_{a}+L_{d} R_{d}+L_{s} R_{s}
$$

A global ambient term may be "thrown" in.

2.1 Ambient Reflection

Same at each point on a surface:

$$
I_{a}=R_{a} L_{a}
$$

Repeat for each color.

2.2 Diffuse Reflection

1. Diffuse surface brightest at noon, dimmest at dawn, dusk.
2. Lambert's law: we see only the vertical component of light:

$$
R_{d} \propto \cos \theta
$$

3. If \mathbf{l} and \mathbf{n} are normalized:

$$
\cos \theta=\mathbf{l} \cdot \mathbf{n}
$$

So:

$$
I_{d}=\frac{R_{d}}{a+b d+c d^{2}}(\mathbf{l} \cdot \mathbf{n}) L_{d} .
$$

2.3 Specular Reflection

1. Specular reflection produces highlights.
2. The smoother the surface (higher shininess) the narrower the range of reflection angles.
3. Reflectivity proportional to angle between viewer (\mathbf{v}) and perfect reflection (r):

$$
R_{d} \propto \cos ^{\alpha} \phi
$$

where α is the shininess term:
(a) <100 for objects with broad highlights.
(b) 100 to 500 for most metallic objects.
4. Assuming normalized vectors:

$$
I_{s}=\frac{R_{s}}{a+b d+c d^{2}}(\mathbf{r} \cdot \mathbf{v})^{\alpha} L_{s}
$$

2.4 The Phong Model

Computed for each light source and each color:

$$
I=\frac{1}{a+b d+c d^{2}}\left(R_{d} L_{d}(\mathbf{l} \cdot \mathbf{n})+R_{s} L_{s}(\mathbf{r} \cdot \mathbf{v})^{\alpha}\right)+R_{a} L_{a} .
$$

3 Introduction to Computation of Normals

1. Outward facing normal must be specified for each vertex.
2. Analytic surfaces: cross product of partial differentials
3. Polygonal surfaces:
(a) Points of continuity.
(b) Points of discontinuity.
