Light

Tom Kelliher, CS 320

Apr. 6, 2011

1 Administrivia

Announcements

Assignment

Read Chapter 6.

From Last Time

RoomView lab.

Outline

1. Real world lighting.
2. A lighting model.
3. Types of shading.
4. The Phong reflection model.

Coming Up

Discussion of next project.

2 Lighting in the Real World

1. Viewer, lights, objects.
2. Light properties?
3. Material properties: Translucence, reflectance (specularity), scattering (diffusion). Examples? Color of an object.
4. How do lights and materials interact?
5. The rendering equation. Calculation for each point in a scene.
6. Need a balance between accuracy and efficiency.
7. Local vs. global lighting. The graphics pipeline.

3 A Lighting Model

1. General illumination function for a light source: $I(x, y, z, \theta, \phi, \lambda)$.
2. Types of modeled light sources:
(a) Ambient light
(b) Point sources
(c) Spotlights
(d) Distant light sources

3.1 Color Sources

1. Illumination function is a continuous function of wavelength.
2. Complex computation, vision model.
3. Luminance function:

$$
\mathbf{I}=\left[\begin{array}{c}
I_{r} \\
I_{g} \\
I_{b}
\end{array}\right]
$$

3.2 Ambient Light

1. Uniform light - "background" light.
2. Model:

$$
\mathbf{I}_{a}=\left[\begin{array}{c}
I_{a r} \\
I_{a g} \\
I_{a b}
\end{array}\right]
$$

3.3 Point Sources

1. Emits light equally in all directions.
2. Assume point source at \mathbf{p}_{0}. Color vector:

$$
\mathbf{I}\left(\mathbf{p}_{0}\right)=\left[\begin{array}{c}
I_{r}\left(\mathbf{p}_{0}\right) \\
I_{g}\left(\mathbf{p}_{0}\right) \\
I_{b}\left(\mathbf{p}_{0}\right)
\end{array}\right]
$$

3. Illumination at \mathbf{p} due to \mathbf{p}_{0} ? Depends upon square of distance:

$$
\mathbf{I}\left(\mathbf{p}, \mathbf{p}_{0}\right)=\frac{1}{\left\|\mathbf{p}-\mathbf{p}_{0}\right\|^{\mathbf{2}}} \mathbf{I}\left(\mathbf{p}_{0}\right)
$$

4. High contrast harshness due to shadow effects: umbra, penumbra.
5. In practice, replace inverse square term with

$$
a+b d+c d^{2}
$$

where d is the distance and a, b, and c are constants chosen to soften.

3.4 Spotlights

1. Simple spotlight: point source with light emitted only through narrow range of angles.
2. Consider the source at \mathbf{p}_{s} to be restricted by the cone described by \mathbf{l}_{s} and θ.
3. For accuracy, distribution within the cone is modeled by $\cos ^{e} \phi$.

3.5 Distant Light Sources

1. Re-calculating the $\mathbf{p}_{0}-\mathbf{p}$ vector.
2. If the distance is "large" how much does the vector change?
3. Replace source location with source direction:
(a) Near source: $\mathbf{p}_{0}=\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$ (a point)
(b) Far source: $\mathbf{p}_{0}=\left[\begin{array}{l}x \\ y \\ z \\ 0\end{array}\right]$ (a vector)

4 Shading

1. Flat shading: each point on a polygon assigned same color.
2. Gouraud (smooth) shading: assign colors individually to vertices, interpolate.

5 The Phong Reflection Model

1. Consider an object point, \mathbf{p} and a light source \mathbf{p}_{i}.
2. Important vectors:

(a) l : vector to light source.
(b) n : surface normal.
(c) v : vector to COP.
(d) r : reflection vector.
3. The light from source to object can be described by:

$$
\mathbf{L}_{i}=\left[\begin{array}{lll}
L_{i r a} & L_{i g a} & L_{i b a} \\
L_{i r d} & L_{i g d} & L_{i b d} \\
L_{i r s} & L_{i g s} & L_{i b s}
\end{array}\right]
$$

(theoretically wrong but, in practice, right)
4. Using material properties, distance from viewer, orientation of surface and direction of source a reflection matrix can be constructed:

$$
\mathbf{R}_{i}=\left[\begin{array}{lll}
R_{i r a} & R_{i g a} & R_{i b a} \\
R_{i r d} & R_{i g d} & R_{i b d} \\
R_{i r s} & R_{i g s} & R_{i b s}
\end{array}\right]
$$

5. (Simplified) Illumination at \mathbf{p} :

$$
I=I_{a}+I_{d}+I_{s}=L_{a} R_{a}+L_{d} R_{d}+L_{s} R_{s}
$$

A global ambient term may be "thrown" in.

