Viewer Movement in OpenGL

Tom Kelliher, CS 320

Apr. 1, 2011

1 Administrivia

Announcements

New project handout.

Assignment

Read 5.8-5.9.

From Last Time

Linear algebra basis for computer graphics transformations.

Outline

1. Understanding clipping volumes and their specifications.
2. Projections.
3. Movements in 3-D.
4. Toward a better movement model.

Coming Up

Movement through a room.

2 Preliminary: Viewing Volumes

Are our viewing volume coordinates relative or absolute?

Consider:

1. By default, the eye is at $(0,0,0)$ looking down the $-z$ axis.
2. What does
glOrtho(-10.0, 10.0, -5.0, 5.0, -2.0, 2.0);
mean?
3. Other viewing modes:
(a) glFrustum: same parameters as glOrtho. What's a frustum? Truncated pyramid.
(b) gluPerspective: fovy, aspect ratio, zNear, and zFar.
znear and zfar need to be positive.

3 Moving and Positioning the Eye

View specification:

1. One way of specifying eye position and viewing angle:
(a) Specify position of eye.
(b) Specify center of field of view.
(c) Specify "up."
2. Use of gluLookAt() in cubeview.c:
```
void display(void)
{
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
/* Update viewer position in modelview matrix */
    glLoadIdentity();
    gluLookAt(viewer[0],viewer[1],viewer [2], 0.0, 0.0, 0.0,
        0.0, 1.0, 0.0);
/* rotate cube */
    glRotatef(theta[0], 1.0, 0.0, 0.0);
    glRotatef(theta[1], 0.0, 1.0, 0.0);
    glRotatef(theta[2], 0.0, 0.0, 1.0);
        colorcube();
    glutSwapBuffers();
}
```

Note order of matrix multiplications: view, then model transformations.
3. Is it really necessary to have view and model transformations?

3.1 Example Runs

1. P1: Stock viewcube using frustum. Demonstrate clipping, invisibility when up vector is parallel to line of sight, walking through the cube.
2. P2: Perspective view with fovy 45, near 2, and far 20.
3. P3: Perspective view with fovy 135 , near 0.1 , far 100.

4 A Movement Model

Problems with viewer movement in cubeview:

1. Must specify movement in global coordinate values.
2. Can't speak of left, right, forward, backward, etc.

Consider this model:

Eye: (x, y)
Center: $(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y}+\Delta \mathrm{y})$

1. What should the radius of the circle be?
2. Given x, y, and θ, what's Δx and Δy ?
3. How do we handle left, right, forward and backward?
4. Suppose, to see the "big picture," I wanted to elevate on the Z-axis. What should I do with center? Is that easy to do?
