Chapter 6: Process

Synchronization
- 1] - 1]

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

Administrivia

In lab Friday.

New assignment.

Exam: Monday, April 6, on Chapters 1--6.
Read 8.1—8.5 for Monday.

Operating System Concepts — 8 Edition 6.2 Silberschatz, Galvin and Gagne ©2009

Outline

® Problems with semaphores.
= Monitors and examples.
® Synchronization facilities in operating environments.

Operating System Concepts — 8t Edition 6.3 Silberschatz, Galvin and Gagne ©2009

Problems with Semaphores

®m Correct use of semaphore operations:
e signal (mutex) wait (mutex)

e wait (mutex) ... wait (mutex)

e Omitting of wait (mutex) or signal (mutex) (or both)

Operating System Concepts — 8" Edition 6.4 Silberschatz, Galvin and Gagne ©2009

Monitors

®= A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

= Only one process may be active within the monitor at a time

monitor monitor-name

{

/I shared variable declarations
procedure P1 (...){ }

procedure Pn (...) {...... }

Initialization code (....) { ... }

Condition Variables

®m condition x, y;

® Two operations on a condition variable:
e x.wait () —a process that invokes the operation is
suspended.
* x.signal () — resumes one of processes (if any) that
invoked x.walit ()

Monitor with Condition Variables

shared data

gueues associated with
X, y conditions

y B

operations

initialization
code

Operating System Concepts — 8" Edition 6.7 Silberschatz, Galvin and Gagne ©2009

Solution to Dining Philosophers

monitor DP

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] |= EATING) self [i].wait;

void putdown (int i) {
state[i] = THINKING;
// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

Operating System Concepts — 8" Edition 6.8

Silberschatz, Galvin and Gagne ©2009

Solution to Dining Philosophers (cont)

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {
state[i] = EATING ;
selffi].signal () ;
}
}

initialization_code() {
for (inti=0;i<5;i++)
state[i] = THINKING;

A Monitor to Allocate A Single Resource

monitor ResourceAllocator
{
boolean busy;
condition Xx;
void acquire(int time) { // time is max usage time
if (busy)
x.wait(time); // wait()’s param used to order the wait queue.
/I Implements a “shortest time first” priority.
busy = TRUE;
}
void release() {
busy = FALSE;
x.signal();
}
initialization code() {
busy = FALSE;

}

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 6.10

Synchronization Examples

= Java

= Windows XP
B Linux

®m Pthreads

Java Synchronization

® Synchronized class methods --- Every Java object has an associated lock.
® |f lock is held by another thread, entering thread is queued on entry set.

® Java provides wait() and notify(), similar to wait() and signal().

® Java 5 provides semaphores, condition variables, and mutex locks.

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 6.12

Windows XP Synchronization

m Uses interrupt masks to protect access to global resources on uniprocessor
systems

m Uses spinlocks on multiprocessor systems. Threads holding spinlocks
never preempted.

® Also provides dispatcher objects which may act as either mutexes or
semaphores

®m Dispatcher objects may also provide events
* An event acts much like a condition variable

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 6.13

Linux Synchronization

® Linux:
* Prior to kernel Version 2.6, kernel was nonpreemptive.
e Version 2.6 and later, fully preemptive kernel.

® Linux provides:
e Semaphores.

* Spinlocks (SMP systems). Uniprocessor systems disable/enable kernel
preemption.

Operating System Concepts — 8" Edition 6.14 Silberschatz, Galvin and Gagne ©2009

Pthreads Synchronization

® Pthreads APl is OS-independent
® |t provides:

* mutex locks

» condition variables

= Non-portable extensions include:
* read-write locks
* gspin locks

Operating System Concepts — 8" Edition 6.15 Silberschatz, Galvin and Gagne ©2009

End of Chapter 6

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

