Chapter 5: CPU Scheduling

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

Administrivia

® Read Chapter 5 (This material).
® Read6.1--6.6.

Operating System Concepts — 8" Edition 5.2 Silberschatz, Galvin and Gagne ©2009

Outline

= Background.

® Evaluation criteria.

® Scheduling algorithms.

® Multi-processor scheduling.
® Linux scheduling.

® Evaluating scheduling algorithms.

Operating System Concepts — 8t Edition 5.3 Silberschatz, Galvin and Gagne ©2009

Quick Review

= Maximum CPU utilization obtained with multiprogramming

m CPU-I/O Burst Cycle — Process execution consists of a cycle of
CPU execution and I/O wait

® CPU burst distribution

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 5.4

Histogram of CPU-burst Times

160

140 \
120

=y

o

o
e

frequency
[00]
o
=

40 \
20 \

0 8 16 24 32 40
burst duration (milliseconds)

L J

CPU Scheduler

®m Selects from among the processes in memory that are ready to execute,
and allocates the CPU to one of them

® CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Quantum expires
3. Switches from waiting to ready
4. Terminates
® Scheduling under 1 and 4 is nonpreemptive
= All other scheduling is preemptive

Dispatcher

®m Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

e switching context
e switching to user mode

* jumping to the proper location in the user program to restart
that program

®= Dispatch latency — time it takes for the dispatcher to stop one
process and start another running

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 5.7

Scheduling Criteria

= CPU utilization — keep the CPU as busy as possible

= Throughput — # of processes that complete their execution per
time unit

® Turnaround time — amount of time to execute a particular process

= Waiting time — amount of time a process has been waiting in the
ready queue

= Response time — amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
P, 3
P, 3

m Suppose that the processes arrive in the order: P, , P,, P,
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30

m Waiting time for P, =0; P, =24; P,=27
®= Average waiting time: (0 + 24 + 27)/3 =17

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 5.9

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order
PZ’ P3! P1

® The Gantt chart for the schedule is:

P, P, P,

0 3 6 30
= Waiting time for P,=6,P,=0.P,=3
® Average waiting time: (6 + 0+ 3)/3=3
® Much better than previous case
®m Convoy effect short process behind long process

Operating System Concepts — 8t Edition 5.10 Silberschatz, Galvin and Gagne ©2009

Shortest-Job-First (SJF) Scheduling

®m Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time

= SJF is optimal — gives minimum average waiting time for a given set of
processes

e The difficulty is knowing the length of the next CPU request

Operating System Concepts — 8" Edition 5.11 Silberschatz, Galvin and Gagne ©2009

Example of SJF

Process Arrival Time Burst Time
P, 0.0 6
P, 2.0 8
P, 4.0 7
P, 5.0 3

m SJF scheduling chart

P, P, P, P,

0 3 9 16 24

= Average waitingtime=(3+16+9+0)/4=7

Determining Length of Next CPU Burst

= (Can only estimate the length
= Can bg done by using the length of previous CPU bursts, using exponential
averaging
1. t, =actual length of n CPU burst
2. T, =predicted value for the next CPU burst
3.a,0sa<1
4. Define: T, =at +(1-a)r,.

Operating System Concepts — 8" Edition 5.13 Silberschatz, Galvin and Gagne ©2009

Prediction of the Length of the Next CPU Burst

12 /,,_..._--—- —

T, 10 //

4
2
time ——»
CPU burst (t) 6 4 6 4 18 18 13

"guess” (1) 10 8 6 6 5 9 11 12

Priority Scheduling

® A priority number (integer) is associated with each process

® The CPU is allocated to the process with the highest priority (smallest
integer = highest priority)

* Preemptive
* nonpreemptive

m SJF is a priority scheduling where priority is the predicted next CPU burst
time

= Problem = Starvation — low priority processes may never execute
® Solution = Aging — as time progresses increase the priority of the process

Round Robin (RR)

m Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

m |f there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more
than (n-1)q time units.

®m Performance

* glarge O FIFO

* gsmall O g must be large with respect to context switch,
otherwise overhead is too high

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 5.16

Example of RR with Time Quantum =4

Process Burst Time
P, 24
P2
P3

® The Gantt chart is:

PP, | P, | P |P |P|P|P,

0 4 7 10 14 18 22 26 30

m Typically, higher average turnaround than SJF, but better response

Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 5.18

Turnaround Time Varies With The Time Quantum

process | time
12.5 p 6
)
12.0 A ﬁz ?
. \ :
g 115 P, 7
% 11 OA \
S b i \
€ 105 +
=
2 10.0
©
> 95
9.0

1 2 3 4 5 6 7
time quantum

Multilevel Queue

® Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

= Each queue has its own scheduling algorithm
* foreground — RR
e background — FCFS

®m Scheduling must be done between the queues

» Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR; 20% to
background in FCFS

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 5.20

Multilevel Queue Scheduling

highest priority

e interactive editing processes f——p
— batch processes —
— student processes ————p

lowest priority

Operating System Concepts — 8t Edition 5.21 Silberschatz, Galvin and Gagne ©2009

Multilevel Feedback Queue

® A process can move between the various queues; aging can be
implemented this way

= Multilevel-feedback-queue scheduler defined by the following
parameters:

* number of queues

» scheduling algorithms for each queue

* method used to determine when to upgrade a process
* method used to determine when to demote a process

* method used to determine which queue a process will enter
when that process enters/re-enters ready queue

Example of Multilevel Feedback Queue

® Three queues:
e Q,— RR with time quantum 8 milliseconds

e Q, — RRtime quantum 16 milliseconds
e Q,-FCFS
= Scheduling

» A new job enters queue Q, which is served FCFS. When it gains CPU,

job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is
moved to queue Q.

o At Q), jobis again served FCFS and receives 16 additional milliseconds.
If it still does not complete, it is preempted and moved to queue Q..

Multilevel Feedback Queues

quantum = 8

'_ >
ﬁuantum =16
3»
_»f m—— l

i

Thread Scheduling

= Skip

Operating System Concepts — 8" Edition 5.25 Silberschatz, Galvin and Gagne ©2009

Multiple-Processor Scheduling

® CPU scheduling more complex when multiple CPUs are
available

= Homogeneous processors within a multiprocessor

= Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

= Symmetric multiprocessing (SMP) — each processor
is self-scheduling, all processes in common ready queue,
or each has its own private queue of ready processes

® Processor affinity — process has affinity for processor
on which it is currently running

» soft affinity
* hard affinity

Operating System Concepts — 8" Edition 5.26 Silberschatz, Galvin and Gagne ©2009

NUMA and CPU Scheduling

Operating System Concepts — 8" Edition

CPU CPU
fast access 2Ce fast access
@SS
memory memory
computer
5.27 Silberschatz, Galvin and Gagne ©2009

Multicore Processors

®m Recent trend to place multiple processor cores on same physical chip
®m Faster and consume less power
= Multiple threads per core also growing

* Takes advantage of memory stall to make progress on another thread
while memory retrieve happens on cache miss

Linux Scheduling

®m Constant order O(1) scheduling time
®m Two priority ranges: time-sharing and real-time
® Real-time range from 0 to 99 and nice value from 100 to 140

Priorities and Time-slice length

numeric
priority

Operating System Concepts — 8" Edition

relative
priority

highest

lowest

5.30

time
quantum

real-time
tasks

other
tasks

200 ms

10 ms

Silberschatz, Galvin and Gagne ©2009

List of Tasks Indexed According to Priorities

active
array
priority task lists
[0] Oo—O
[1] o—0—0O
[140] O

Operating System Concepts — 8" Edition 5.31

expired
array
priority task lists
[0] o0 @
[1] O
[140] e—@

Silberschatz, Galvin and Gagne ©2009

Algorithm Evaluation

m Deterministic modeling — takes a particular
predetermined workload and defines the performance of
each algorithm for that workload. Compare with
simulation.

® Queueing models
= Simulation
= |mplementation/Benchmarking

End of Chapter 5

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

