
Introduction

Tom Kelliher, CS 325

Jan. 28, 2009

1 Administrivia

Announcements

Assignment

Read Chapter 1.

Outline

1. Syllabus.

2. A “grand tour:” OS and system views, structure, and operation.

Coming Up

Continued “grand tour.”

2 Syllabus

1. Objectives:

(a) Study operating system design.

1



(b) Understand threads and concurrency: Banking example.

(c) Appreciate connections to other areas of computer science.

2. C refresher project.

3. Internet resources.

4. Linux internals project orientation.

5. Class preparation.

6. (Doubtful) Possibilities for Other topics : deadlock, distributed systems, security and
protection.

3 A Grand Tour

3.1 The Main Thing

An OS’s responsibilities boil down to managing:

f(n)Input Output

n

2



3.2 OS As Interface

Users

User/System Processes

Hardware

Threads

Operating System

(Process = running program. Separate address spaces. Threads share an address space.)

1. Top-down view: virtual machine abstraction — convenient “user” interface. Abstrac-
tions: files, applications. I/O devices integrated into filesystem.

2. Bottom-up view: management of real resources: CPU cycles, memory, disk space,
device allocations.

3. Secondary concerns: efficiency, fairness.

Abstractions:

1. Multiprogramming, protection and security.

Threads.

2. Virtual memory.

3. File systems.

4. Virtualization.

3.3 OS Components

1. Kernel. Static. Process/thread, memory, I/O management and access.

Timers.

3



2. Daemons. Provide additional services.

3. System applications: compilers, linkers, loaders.

4. User applications: shells, windowing systems, browsers, editors, etc.

The “Hello world” program:

1. Compiled into assembly code.

2. Assembled in machine code.

3. Written to a file.

4. Loaded into memory.

5. Linked against system libraries.

6. Executes .

7. Makes supervisor calls to access I/O devices through OS.

3.4 Computing System Organization

1. CPU, memory, I/O devices block diagram.

I/O device bandwidth/latency differences.

Process execution within this context. Data/code locality: caches. VM. DMA.

2. Single CPU, multiple CPU chips, multiple cores, hyperthreading. (Phoenix: eight
“CPUs.”)

Why can’t we just turn up the clock?

Efficiencies with multiple cores vs. multiple CPU chips.

Programming consequences.

3. Process, do I/O, repeat model.

4



4. Memory hierarchy. Speed, density, cost, volatility.

5. I/O architecture. Abstract models, device drivers, devices. Plug’n’play/pray.

3.5 OS Structure

1. Multiprogramming.

Mental memory model:

Kernel

Job 0

Job 1

Job 2

Timesharing vs. batch.

Short-term, long-term schedulers.

Physical, virtual memory. Swapping.

2. Interrupt driven kernel operation.

Dual (or more) CPU modes: user, kernel modes. Privileged operations and/or I/O
spaces.

Interrupts, traps. Hardware timers.

5


