
Mail User Agent Project

Tom Kelliher, CS 325

100 points, due May 7, 2008

Introduction

(From Kurose & Ross, 4th ed.) In this project you will implement a mail user agent that sends
mail to other users. Your task is to program the SMTP interaction between the MUA and the
local SMTP server. The client provides a graphical user interface containing fields for entering
the recipient addresses, the subject of the message and the message itself. Here’s what the user
interface looks like:

With this interface, when you want to send a mail, you must fill in complete addresses for the
recipients, i.e., tk@goucher.edu, not just simply tk. You can send mail to multiple To, CC, and
BCC recipients. The hostname of the local SMTP server will be given on the command line. When
you have finished composing your mail, press Send to send it.

The Code

The program consists of four classes:

1. MailClient — The user interface.

2. Message — Mail message.

3. Envelope — SMTP envelope around the Message.

1



4. SMTPConnection — Connection to the SMTP server.

You will need to complete the code in the SMTPConnection class so that in the end you will have a
program that is capable of sending mail to any recipient. The code for the SMTPConnection class
is at the end of this description. The code for the other three classes is provided on the class web
site.

The places where you need to complete the code have been marked with the comments

/* Fill in */

Each of the places requires one or more lines of code.
The MailClient class provides the user interface and calls the other classes as needed. When

you press Send, the MailClient class constructs a Message class object to hold the mail message.
The Message object holds the actual message headers and body. Then the MailClient object
builds the SMTP envelope using the Envelope class. This class holds the SMTP sender and
recipient information, the SMTP server of the recipient’s domain, and the Message object. Then
the MailClient object creates the SMTPConnection object which opens a connection to the SMTP
server and the MailClient object sends the message over the connection. The sending of the mail
happens in three phases:

1. The MailClient object creates the SMTPConnection object and opens the connection to the
SMTP server.

2. The MailClient object sends the message using the function SMTPConnection.send().

3. The MailClient object closes the SMTP connection.

The Message class contains the function isValid() which is used to check the addresses of the
sender and recipient to make sure that there is only one address and that the address contains the
@-sign. The provided code does not do any other error checking.

Reply Codes

For the basic interaction of sending one message, you will only need to implement a part of SMTP.
In this project you need only to implement the following SMTP commands:

Command Reply Code

DATA 354

HELO 250

MAIL FROM 250

QUIT 221

RCPT TO 250

The above table also lists the accepted reply codes for each of the SMTP commands you need to
implement. For simplicity, you can assume that any other reply from the server indicates a fatal
error and abort the sending of the message. In reality, SMTP distinguishes between transient (reply
codes 4xx) and permanent (reply codes 5xx) errors, and the sender is allowed to repeat commands
that yielded in a transient error. See Appendix E of RFC 821 for more details.

In addition, when you open a connection to the server, it will reply with the code 220.
Note: RFC 821 allows the code 251 as a response to a RCPT TO-command to indicate that the

recipient is not a local user. You may want to verify manually with the telnet command what your
local SMTP server replies.

2



Hints

Most of the code you will need to fill in is similar to the code you wrote in the WebServer project.
You may want to use the code you have written there to help you.

To make it easier to debug your program, do not, at first, include the code that opens the
socket, but use the following definitions for fromServer and toServer. This way, your program
sends the commands to the terminal. Acting as the SMTP server, you will need to give the correct
reply codes. When your program works, add the code to open the socket to the server.

fromServer = new BufferedReader(new InputStreamReader(System.in));

toServer = System.out;

The lines for opening and closing the socket, i.e., the lines

connection = ...

in the constructor and the line connection.close() in function close(), have been commented
out by default.

Start by completing the function parseReply(). You will need this function in many places.
In the function parseReply(), you should use the StringTokenizer class for parsing the reply
strings. You can convert a string to an integer as follows:

int i = Integer.parseInt(argv[0]);

In the function sendCommand(), you should use the function writeBytes() to write the commands
to the server. The advantage of using writeBytes() instead of write() is that the former auto-
matically converts the strings to bytes which is what the server expects. Do not forget to terminate
each command with the string CRLF.

You can throw exceptions like this:

throw new Exception();

You do not need to worry about details, since the exceptions in this project are only used to signal
an error, not to give detailed information about what went wrong.

For these parts of the project, you will need to modify the classes from what is given here.

1. Construct sender address. Java’s System class contains information about the username and
the InetAddress class contains methods for finding the name of the local host. Use these to
construct the sender address for the Envelope.

2. Multiple recipients. Your program should be able to handle an arbitrary number of To, CC,
and BCC recipients.

SMTPConnection.java

This is the code for the SMTPConnection class that you will need to complete. The code for the
other three classes is provided on the class web site.

import java.net.*;

import java.io.*;

import java.util.*;

/**

3



* Open an SMTP connection to a mailserver and send one mail.

*

*/

public class SMTPConnection {

/* The socket to the server */

private Socket connection;

/* Streams for reading and writing the socket */

private BufferedReader fromServer;

private DataOutputStream toServer;

private static final int SMTP_PORT = 25;

private static final String CRLF = "\r\n";

/* Are we connected? Used in close() to determine what to do. */

private boolean isConnected = false;

/* Create an SMTPConnection object. Create the socket and the

associated streams. Initialize SMTP connection. */

public SMTPConnection(Envelope envelope) throws IOException {

// connection = /* Fill in */;

fromServer = /* Fill in */;

toServer = /* Fill in */;

/* Fill in */

/* Read a line from server and check that the reply code is 220.

If not, throw an IOException. */

/* Fill in */

/* SMTP handshake. We need the name of the local machine.

Send the appropriate SMTP handshake command. */

String localhost = /* Fill in */;

sendCommand( /* Fill in */ );

isConnected = true;

}

/* Send the message. Write the correct SMTP-commands in the

correct order. No checking for errors, just throw them to the

caller. */

public void send(Envelope envelope) throws IOException {

/* Fill in */

/* Send all the necessary commands to send a message. Call

sendCommand() to do the dirty work. Do _not_ catch the

exception thrown from sendCommand(). */

/* Fill in */

}

4



/* Close the connection. First, terminate on SMTP level, then

close the socket. */

public void close() {

isConnected = false;

try {

sendCommand( /* Fill in */ );

// connection.close();

} catch (IOException e) {

System.out.println("Unable to close connection: " + e);

isConnected = true;

}

}

/* Send an SMTP command to the server. Check that the reply code is

what is is supposed to be according to RFC 821. */

private void sendCommand(String command, int rc) throws IOException {

/* Fill in */

/* Write command to server and read reply from server. */

/* Fill in */

/* Fill in */

/* Check that the server’s reply code is the same as the parameter

rc. If not, throw an IOException. */

/* Fill in */

}

/* Parse the reply line from the server. Returns the reply code. */

private int parseReply(String reply) {

/* Fill in */

}

/* Destructor. Closes the connection if something bad happens. */

protected void finalize() throws Throwable {

if(isConnected) {

close();

}

super.finalize();

}

}

Administrivia

1. Your main Java class should be named MailClient. Ensure that the following will successfully
start your client:

java MailClient <smtp_server>

using smtp_server as the local SMTP server. For example:

5



java MailClient phoenix.goucher.edu

2. Your client may be implemented in any language currently available on kingfisher, using the
libraries currently available on kingfisher. If you implement your client in any language other
than C or Java, you are completely on your own — I am only willing to provide assistance
for programs written in one of these two languages.

You should assume that I only know how to compile and run C and Java programs. Therefore,
if you implement your client in another language, you are responsible for including complete
and concise instructions for compiling and/or running your program, as part of your program’s
documentation.

3. Your source code must be appropriately documented. This will count as 50% of your grade.
Spelling and grammar matter. See
http://people.msoe.edu/~taylor/resources/javadoc.htm for my expectations.

4. Your client code must be emailed as an attachment to kelliher[at]goucher.edu by the
beginning of class on the due date.

5. Your client code will be tested by running it on kingfisher, using phoenix, bluebird, and
goldfinch as SMTP servers. Phoenix will accept mail from your client. Note that bluebird
prohibits relaying and goldfinch doesn’t allow TCP connections to the SMTP port. Your code
should be capable of printing a diagnostic error message in these situations in a non-hostname
dependent manner.

6. There are many mail clients available in source form out on the web. I consider merely
viewing any such source code, regardless of implementation language, to be a violation of the
Honor Code. In a similar vein, although I encourage you to discuss concepts with each other,
I prohibit you from sharing any code with each other. Again, any violation of this policy is
a violation of the Honor Code.

6


