
Transport Layer Congestion Control

Tom Kelliher, CS 325

Apr. 7, 2008

1 Administrivia

Announcements

Assignment

Read 4.1–4.3.

From Last Time

TCP Reliability.

Outline

1. Congestion control principles.

2. TCP congestion control.

Coming Up

Network layer introduction.

1



2 Congestion Control Principles

2.1 Two Senders; Single Router with Infinite Buffers

1. Assume no segments are dropped and senders don’t time-out any segments — no
retransmits.

2. The network load generated by each sender’s application layer is λin bps.

Assume the senders equally share the available bandwidth.

3. The router’s outgoing link has capacity R bps.

4. The network load seen by the receiver’s application layer is λout bps.

2



1. λout = λin until we hit the bandwidth limit — R/2 shared — lambdaout can’t exceed
this.

2. As λin approaches R/2, the router’s segment queue’s length — and delay — increases.

2.2 Two Senders; Single Router with Finite Buffers

1. Now, segments will be be dropped and retransmits will occur.

2. λ′

in
is the offered load of the transport layer.

Due to retransmits, λ′

in
≥ λin.

3



1. Due to finite buffers, λ′

∈
can’t exceed R/2 — shared link capacity.

The graph on the left assumes the sender is omniscient and knows when the router
has free buffers and only transmits segments then, avoiding dropped segments. —
unrealistic.

2. Dropped segments mean duplicate, redundant data sent across a link — wasting band-
width.

The middle graph shows what could happen if the sender retransmits only segments
known to be lost — again, unrealistic. Here, we assume 17% of segments are retrans-
mits.

3. Realistically, delays will cause some non-dropped segments to be retransmitted, further
wasting bandwidth with redundant segments.

The graph on the right shows this realistic scenario, assuming each segment is retrans-
mitted once.

4



2.3 Four Senders; Multiple Routers with Finite Buffers; Multihop

Routes

1. Consider what could happen if R2 becomes congested due to B–D traffic:

(a) R2 begins dropping segments from A–C, wasting bandwidth at R1.

(b) A’s offered load increases, to handle retransmits.

(c) R1 could become congested, affecting the (initially free) D–B route.

5



Worst case, B–D traffic could completely lock-out A–C traffic beyond the point at which λ′

in

saturates the routers’ transmit capacity:

2.4 Congestion Control Approaches

Two approaches:

1. End-to-end control:

(a) No help from network layer —sender/receiver have to intuit congestion on their
own.

(b) TCP intuits congestion through fast retransmits (triple ACKs), not too bad —
some bandwidth still available; timeout transmits, really bad — no bandwidth
available.

6



Third idea for TCP: increased RTTs mean congestion is beginning to become a
problem.

2. Network assisted. Two approaches here:

(a) Direct feedback with choke packet — router sends choke command directly to
sender.

(b) Indirect feedback with congestion indication bit in segment — router sets this,
when congested, as it forwards a segment to receiver.

Receiver responsible for getting the indication back to the sender.

3 TCP Congestion Control

1. Recall receive window for flow control:

LastByteSent− lastByteAcked ≤ RcvWindow

2. Recall our transmit model: sender sends n segments each RTT with n × MSS =
RcvWindow.

We therefore have λ′

in
= RcvWindow/RTT .

So, RcvWindow, controlled by receiver, can be used to throttle sender rate.

3. TCP itself defines CongWindow, maintained by sender, to throttle sender rate in face
of congestion.

We then have:

LastByteSent− lastByteAcked ≤ min(RcvWindow, CongWindow)

Sender rate controlled by both RcvWindow and CongWindow.

TCP congestion control algorithm:

1. Multiplicative decrease:

7



(a) After triple duplicate ACK, cut CongWindow in half. CongWindow never drops
below 1 MSS.

Not as bad as a timeout.

(b) After a timeout, cut CongWindow down to 1 MSS.

2. Additive increase:

(a) Increase CongWindow by 1 MSS each RTT.

Increase rate is controlled by RTT — a lower RTT results in faster CongWindow

increase rate.

Often implemented by increasing CongWindow by 1 MSS×(MSS/CongWindow) for
each new ACK.

(b) Actually, CongWindow increase is multiplicative until Threshold is reached.

(c) Additive increase; multiplicative decrease:

3. Slow start:

(a) CongWindow is set to 1 MSS for a new connection.

(b) CongWindow is increased by 1 MSS for each ACK received, until Threshold is
reached.

8



Exponential increase in CongWindow during SS phase:

9



(c) Additive increase, once Threshold reached:

TCP Reno = current algorithm. Is decrease from timeout or fast retransmit?

4. Actual timeout events behavior:

State Event Sender Action Comment

Slow Start (SS) New ACK received CongWin = CongWin
+ MSS. if (CongWin
> Threshold) set state
to CA.

CongWin doubles ev-
ery RTT.

Congestion Avoidance
(CA)

New ACK received CongWin =
CongWin +
MSS(MSS/CongWin)

CongWin increases by
1 MSS every RTT.

SS or CA Triple Dup ACK Threshold = Cong-
Win/2. CongWin =
Threshold. set state
to CA.

Fast recover; multi-
plicative decrease.

SS or CA Timeout Threshold = Cong-
Win/2. CongWin = 1
MSS. Set state to SS.

SS or CA Duplicate ACK re-
ceived

Increment dupli-
cate ACK count for
segment

3.1 Fairness

Is TCP’s AIMD algorithm fair? Consider this situation:

10



Suppose, initially, connection 1 has a higher throughput (CongWindow) than connection 2:

This shows what happens during 3DupACK events — multiplicative decrease. Eventually,
we converge to equal throughput.

On timeout, both connections will end up with a CongWindow of 1 MSS.

11


