Decoders, Encoders, and Muxes, Oh My!

Tom Kelliher, CS 240
Feb. 18, 2008

1 Administrivia

Announcements

Assignment

Read 4.1–4.2. Review mostly; background for carry lookahead.

From Last Time

Combinational design example.

Outline

1. Decoders
2. Encoders
3. Muxes

Coming Up

Lower bound for addition. Fast addition algorithms.
2 Decoders

Block diagram (diagram a 3-8 decoder):

A circuit with n inputs. The inputs are interpreted as a binary number and used to select one of 2^n output lines.

1. Most common use: Address decoders for RAMs and register files.

2. Decoder expansion example: design a 5-to-32 using 5 3-to-8 decoders.

3. Example use: Design a BCD to seven segment decoder using a 4 to 16 decoder and OR gates.

3 Encoders

Inverse of a decoder: 2^n inputs; n outputs.

1. What happens if multiple inputs are high?

2. Most common uses: priority encoders for interrupt controllers; “hit” logic for caches.

3. Design example: Four input priority encoder with a “Valid” output.
4 Muxes

Used to select one of 2^n inputs. One way switch.

Block diagram (draw a 4-1 mux):

1. Most common uses: RAM, register file data selection circuits; Boolean function generators.

2. What’s a quad 2-1 mux?

3. Design example: Implement a three input Boolean function using an 8-1 mux. No additional logic.

 Four input Boolean function using an 8-1 mux and an inverter?

 Five input Boolean function?