1 Administrivia

Announcements

Study for the exam:

1. Boolean algebra and boolean identities.
2. Minterms.
3. Karnaugh maps, map minimization.
4. Circuit realization using AND, OR, and NOT gates.
5. Addition’s lower bound.
6. Carry lookahead and radix 2 signed-digit addition.

Assignment

From Last Time

Carry-lookahead and signed-digit addition.
2 VHDL Program Structure

VHDL is case insensitive!!

1. Structure of a VHDL program:

 Library includes;
 Entity declaration;
 Architectural definition of entity;

2. Library includes:

 -- This is a comment.
 library ieee, lcdf_vhdl;
 use ieee.std_logic_1164.all, lcdf_vhdl_.func_prims.all;

 Reserved words: library, use, .all.

 Similar to import, include statements.

3. Entity declaration:
entity entity_name is
 port(i0, i1, i2 : in std_logic;
 o0 : out std_logic);
end entity_name;

Reserved words: entity, is, port, in, out, end.

Note that entity_name follows end.

4. Architectural definition of entity:

architecture arch_name of entity_name is

 component declarations;
 signal declarations;

 begin
 VHDL statements;
 end arch_name;

Reserved words: architecture, of, begin.

entity_name must match. arch_name is just a “place holder” — possible to describe
an entity with multiple architectures.

Again, note that arch_name follows end.

5. Component declaration:

component component_name
 port(i0, i1 : in std_logic;
 o0 : out std_logic);
end component;

Reserved words: component.

Like base class declarations in C++.

6. Signal declarations:

signal s0, s1, s2 : std_logic;

Similar to variable declarations.
3 Structural VHDL

1. Describes structure of a circuit — similar to netlist. Low-level description.

2. Example: Three input EXOR.

 Equation: $\overline{i_2} \overline{i_1} i_0 + \overline{i_2} i_1 \overline{i_0} + i_2 \overline{i_1} \overline{i_0} + i_2 i_1 i_0$

 VHDL:

   ```vhdl
   library ieee, lcdf_vhdl;
   use ieee.std_logic_1164.all, lcdf_vhdl_.func_prims.all;

   entity EXOR2 is
       port(i2, i1, i0 : in std_logic;
           o : out std_logic);
   end EXOR2;

   arch structural of EXOR2 is

   component NOT1
       port(in1 : in std_logic;
           out1 : out std_logic);
   end component;

   component NAND3
       port(in1, in2, in3 : in std_logic;
           out1 : out std_logic);
   end component;

   component NAND4
       port(in1, in2, in3, in4 : in std_logic;
           out1 : out std_logic);
   end component;

   signal i2_n, i1_n, i0_n, t3, t2, t1, t0 : std_logic;

   begin
       g0: NOT1 port map(i2, i2_n);
       g1: NOT1 port map(i1, i1_n);
       g2: NOT1 port map(i0, i0_n);
       g3: NAND3 port map(i2_n, i1_n, i0, t3);
   ```
g4: NAND3 port map(i2_n, i1, i0_n, t2);
g5: NAND3 port map(i2, i1_n, i0_n, t1);
g6: NAND3 port map(i2, i1, i0, t0);

g7: NAND4 port map(t3, t2, t1, t0, o);

end structural;

4 Class Practice

Write structural VHDL for carry bit of full adder.