1 Administrivia

Announcements

Assignment

Read 4.7 and 5.7.

From Last Time

Addition limits.

Outline

1. Carry lookahead addition.

2. Signed digit representations.

Coming Up

Introduction to VHDL.
2 Carry Lookahead Addition

1. Now, we demonstrate a feasible $O(\log n)$ adder.

2. Recall:

 (a) Carry generate: $g_i = a_i b_i$.

 (b) Carry propagate: $p_i = a_i \oplus b_i$.

2.1 Carry Lookahead: The Big Picture

Restricting the carry computation circuitry to a tree structure:

- Leaves: Four-bit carry lookahead adders.
- Non-Leaves: Four-bit carry lookahead group units.

2.2 Four-Bit Carry Lookahead Adder

1. Design a four-bit full carry lookahead adder.

 Block diagram:
Block generate, propagate.

2. What is the fan-in?

3. What is the delay model from inputs to outputs?

2.3 4-Bit Group Carry Lookahead Unit

1. Design a 4-Group carry lookahead unit.

 Block diagram:

 Use of block generates, propagates.

2. What is the fan-in?
3. What is the delay model from inputs to outputs?

2.4 16-Bit Carry Lookahead Adders

Total gate delays for ripple-carry adder.

Gate delays for cascaded and full carry lookahead adders.

3 Signed Digit Representations

1. Consider the digit set of the maximally redundant signed digit representation for radix r: \(\{r-1, r-2, \ldots, 1, 0, 1, \ldots, r-1\} \)

2. For radix 2 we have: \(\{1, 0, 1\} \).

 Radix 4: \(\{3, 2, \ldots, 3\} \).

3. For some values, there are multiple representations. For example: \(3 = 011 = 10\overline{1} \) (radix 2).

4. This redundancy can be exploited so that we can design constant time signed digit adders.

3.1 Constant Time Radix 2 Signed Digit Adder

1. Idea: Ensure that a carry propagates no further than two bit positions.

2. Circuit sketch:
3. Stage 1 adder addition table:

<table>
<thead>
<tr>
<th>Addend + Augend</th>
<th>Carry</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Goal: Ensure sums are ≥ 0 and carries are ≤ 0.

4. Stage 2 adder addition table:

<table>
<thead>
<tr>
<th>Addend + Augend</th>
<th>Carry</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Goal: Ensure sums are ≤ 0 and carries are ≥ 0.

5. Final stage addition table:

<table>
<thead>
<tr>
<th>Addend + Augend</th>
<th>Carry</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>