Carry Lookahead and Signed-Digit Addition

Tom Kelliher, CS 240

Feb. 27, 2006

1 Administrivia

Announcements

Assignment

Read 4.7 and 5.7.

From Last Time

Addition limits.

Outline

1. Carry lookahead addition.
2. Signed digit representations.

Coming Up

Introduction to VHDL.

2 Carry Lookahead Addition

1. Now, we demonstrate a feasible $\mathrm{O}(\log n)$ adder.
2. Recall:
(a) Carry generate: $g_{i}=a_{i} b_{i}$.
(b) Carry propagate: $p_{i}=a_{i} \oplus b_{i}$.

2.1 Carry Lookahead: The Big Picture

Restricting the carry computation circuitry to a tree structure:

- Leaves: Four-bit carry lookahead adders.
- Non-Leaves: Four-bit carry lookahead group units.

2.2 Four-Bit Carry Lookahead Adder

1. Design a four-bit full carry lookahead adder.

Block diagram:

Block generate, propagate.
2. What is the fan-in?
3. What is the delay model from inputs to outputs?

2.3 4-Bit Group Carry Lookahead Unit

1. Design a 4-Group carry lookahead unit.

Block diagram:

Use of block generates, propagates.
2. What is the fan-in?
3. What is the delay model from inputs to outputs?

2.4 16-Bit Carry Lookahead Adders

Total gate delays for ripple-carry adder.

Gate delays for cascaded and full carry lookahead adders.

3 Signed Digit Representations

1. Consider the digit set of the maximally redundant signed digit representation for radix r : $\{\overline{r-1}, \overline{r-2}, \ldots, \overline{1}, 0,1, \ldots, r-1\}$
2. For radix 2 we have: $\{\overline{1}, 0,1\}$.

Radix 4: $\{\overline{3}, \overline{2}, \ldots, 3\}$.
3. For some values, there are multiple representations. For example: $3=011=10 \overline{1}$ (radix 2).
4. This redundancy can be exploited so that we can design constant time signed digit adders.

3.1 Constant Time Radix 2 Signed Digit Adder

1. Idea: Ensure that a carry propagates no further than two bit positions.
2. Circuit sketch:

3. Stage 1 adder addition table:

Addend + Augend	Carry	Sum
$\overline{2}$	$\overline{1}$	0
$\overline{1}$	$\overline{1}$	1
0	0	0
1	0	1
2	0	2

Goal: Ensure sums are ≥ 0 and carries are ≤ 0.
4. Stage 2 adder addition table:

Addend + Augend	Carry	Sum
$\overline{1}$	0	$\overline{1}$
0	0	0
1	1	$\overline{1}$
2	1	0

Goal: Ensure sums are ≤ 0 and carries are ≥ 0.
5. Final stage addition table:

Addend + Augend	Carry	Sum
$\overline{1}$	0	$\overline{1}$
0	0	0
1	0	1

