Counters

Tom Kelliher, CS 220

Apr. 21, 2006

1 Administrivia

Announcements

Where to, next?

Assignment

Read 8-1-5. Don't pay too much attention to ASM diagrams.

From Last Time

Shift registers.

Outline

1. Ripple counters.
2. Synchronous counters.
3. VHDL.

Coming Up

Multiplier

2 Ripple Counters

The increment ripples - propagation delay problems.

Slow counters.

Basic idea:

1. Each flip-flop's !Q is fed back to D. What does this accomplish?
2. Flip-flop i 's !Q is used to clock flip-flop $i+1$. What does this accomplish?
3. Trace the propagation delay of the clock if the count is currently 1111 and a rising clock edge is applied.
4. Through what sequence, starting with 0000 , does the counter count?

3 Synchronous Counters

1. All flip-flops receive same clock signal.
2. Still have some rippling. (Where?)
3. Inputs: clk, enable.
4. Outputs: count, carry output (for cascading).
5. After state table minimization, input equation for bit i :

$$
C_{i} \oplus\left(C_{0} \cdot C_{1} \cdot \ldots \cdot C_{i-1} \cdot E N\right)
$$

6. One bit slice for serial gating:

7. Serial vs. parallel gating.

4 VHDL

32 bit up counter with enable and reset.
-- Up counter with enable and reset
-- Note how en must be handled after the flip-flop generating -- code.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

```
entity counter is
    port (
        clk, reset_n, en : in std_logic;
    q : out std_logic_vector (31 downto 0);
    co : out std_logic);
end counter;
architecture behavioral of counter is
    signal count : std_logic_vector (31 downto 0);
begin -- behavioral
    q<= count;
    state: process (clk, reset_n)
    begin -- process state
        if reset_n = '0' then
            count <= X"00000000";
        elsif clk'event and clk = '1' then
            if en = '1' then
                count <= count + X'00000001";
            end if;
        end if;
    end process state;
    carry_out: process (count, en)
    begin -- process carry_out
        if count = X"FFFFFFFF" and en = '1' then
            co <= '1';
        else
                co <= '0';
            end if;
    end process carry_out;
end behavioral;
```

