
VHDL for Sequential Circuits

Tom Kelliher, CS 240

Apr. 10, 2006

1 Administrivia

Announcements

Assignment

Read 7-1–3.

From Last Time

Sequential circuit design.

Outline

1. Modified serial comparator.

2. VHDL for serial comparator.

3. Exercise.

Coming Up

Registers

1



2 Modified Serial Comparator

Inputs: A, B, (no more msb). A and B are received least significant bit first. Output 0 if
A ≥ B, otherwise 1.

Reset to S0 on reset.

State diagram:

S1: b > a

S0 S1

01/1

10/0

00/1
01/1
11/1

00/0
10/0
11/0

S0: a >= b

3 VHDL for Serial Comparator

Things to observe:

1. Flip-flop implementation: reset priority, event, rising edge sensitive.

2. If and case — sequential statements — are valid only within a process.

3. Concurrent assignment is a “process.”

4. Semantics of a process: sensitivity list, assignments:

b <= a;

c <= b;

does not behave as it would in C.

5. VHDL architecture broken into three processes:

(a) State storage.

(b) Next state generation.

2



(c) Output generation.

O
Next
State

State

Output
A

B

Clk

Reset

Compare process inputs to sensitivity lists.

-- VHDL for serial comparator. The inputs a and b are input lsb first.

-- The Mealy machine uses rising edge sensitive flip-flops and an

-- asynchronous active low reset.

--

-- The output is 1 if b > a, otherwise 0.

library ieee;

use ieee.std_logic_1164.all;

entity comparator is

port

(a, b, clk, reset : in std_logic;

o : out std_logic

);

end comparator;

architecture process_defn of comparator is

-- Two states needed.

type state_type is (S0, S1);

-- State assignment.

attribute enum_encoding : string;

attribute enum_encoding of state_type :

type is "0 1";

signal state, next_state : state_type;

3



-- For convenience, concatenate a and b.

signal inputs : std_logic_vector (1 downto 0);

begin

-- Concurrent assignment executes the rhs changes.

-- Concatenate a and b into inputs.

inputs <= a & b;

-- Processes execute whenever something on their sensitivity list

-- changes. All assignments take place when the process exits.

--

-- This process implements the D flip-flop.

state_register : process (clk, reset)

begin

-- If/else construct only valid within a process.

if (reset = ’0’) then

state <= S0;

elsif (clk’event AND clk = ’1’) then

state <= next_state;

end if;

end process;

-- This process computes the next state.

next_state_process : process (inputs, state)

begin

case state is

when S0 =>

if (inputs = "01") then

next_state <= S1;

else

next_state <= S0;

end if;

when S1 =>

if (inputs = "10") then

next_state <= S0;

else

next_state <= S1;

end if;

4



end case;

end process;

-- This process computes the output.

output_process : process (inputs, state)

begin

case state is

when S0 =>

if (inputs = "01") then

o <= ’1’;

else

o <= ’0’;

end if;

when S1 =>

if (inputs = "10") then

o <= ’0’;

else

o <= ’1’;

end if;

end case;

end process;

end process_defn;

4 Exercise

Serial comparator. Inputs: A, B. A and B are received most significant bit first. Reset to
initial state on reset. Output 0 if A ≥ B, otherwise 1.

5


