
Query Processing I

Tom Kelliher, CS 318

Apr. 22, 2002

1 Administrivia

Announcements

Homework due Wednesday, start of class.

Assignment

Read 13.4–7.

From Last Time

Indexing schemes.

Outline

1. Introduction.

2. Sorting.

3. Computing projections.

4. SELECT processing.

1



Coming Up

Completion of query processing.

2 Introduction

Given a table and one or more access paths, how do we structure queries to optimize per-
formance?

3 Sorting

1. Have to rely on external sorting techniques.

2. Most important objective is to minimize disk I/O.

3. In addition to the SORT BY clause, sorting will be necessary when DISTINCT is in use.
Why?

4. Assumptions: file consists of F pages and we have M memory buffers at our disposal.

External sorting algorithm:

// Partial sort on runs of M pages.

do {

read next M pages from the file;

sort rows using an in-memory technique;

write the sorted M pages to a file of their own;

} until end of file;

// Merge the partial sorts into a final sorted file.

// Open files for reading to maintain a balanced tree organization

// of runs.

while there is more than one input run {

open M - 1 runs for reading

2



while there is a non-empty run {

choose the smallest tuple, with respect to sort key, from each

run;

output the smallest such tuple and delete it from its run;

}

write and close the output file;

}

}

M − 1 because we need one output buffer.

Rough example: file contains 13 pages, we have three buffers.

Questions:

1. How many page accesses to obtain the partial sorts?

2. How many page accesses to complete a merge step?

3. How many merge steps?

4. How many total page accesses to sort?

4 Computing Projections

1. Eliminating columns might result in duplicates.

DISTINCT clause.

2. Eliminate duplicates by sorting or by hashing.

3. Modifications to basic sort needed to support projections:

(a) Eliminate unnecessary columns from table when first reading pages during the
partial sort step.

3



(b) Eliminate duplicate rows while writing new files.

How will this running time compare to unadorned sort?

4. Sketch of hashing:

(a) Need one input buffer, so we have M − 1 buffers available for hashing.

(b) Find a hash function which hashes the projection columns onto the buffers.

(c) Read file. For each row, gather projected columns and hash. Flush each hash
buffer to a file when full.

(d) For each hash file, read, sort, eliminate duplicates, write to final output file.

Assuming a uniform distribution, each hash file will fit in the M buffers. Quite a
large file can be handled this way.

(e) Total number of page accesses?

5. Union and set difference are similar.

5 SELECT Processing

Preliminaries:

1. Our SELECT model:

SELECT *

FROM R

WHERE Col1 op1 Val1 AND Col2 op2 VAL2 ... Coln opn Valn;

2. Access path options when there is only one condition:

(a) No index — scan the entire file.

Or, if file is sorted on Col1, perform a binary search to get to the first “qualifying”
tuple and then scan forward.

4



Cost?

(b) B+ tree index on Col1 — Find first qualifying tuple and then use sibling pointers
to scan forward.

Cost? Suppose the file is unclustered? Sort the rids.

(c) Hash index on Col1 — Find bucket containing Val1 and scan.

Cost?

3. Access path options when there are n conditions:

(a) No index — scan the entire file.

Or, if file is sorted on several of the Coli, perform a binary search to get to the
first “qualifying” tuple and then scan forward.

Cost?

(b) B+ tree index on several columns.

For this to be useful, a subset of the Coli must be a prefix of the index columns.
Example.

Cost?

(c) Hash index on several columns. All opi must be equality. The columns indexed
on must be a subset of the Coli. Why?

Hash to find buckets, then check buckets for matches.

Cost?

5


