
Synchronization, Locks, Conditional

Variables in Java

Prince Jha

·(https://medium.com/@jhaprincet/synchronization-locks-conditional-variables-in-java-

b0c3413fd28e)

Follow

18 min read

·

Dec 13, 2022

[[Engineer Java Concurrency — 3]]

• Race Condition

• Lock objects

• Condition Variables — await(), signal(), signalAll()

• synchronized keyword

• synchronized blocks

• The intrinsic condition variable — wait(), notify(), notifyAll()

• synchronized in static context

Race Condition:

When multiple threads share same data and try to modify the data, it is possible that the

modifications could lead to an inconsistent state or corrupted state of the object that depends on

the order in which the threads operate on the object, such a situation is called Race Condition.

Example of Race Condition:

Let’s say we have a single bulb and there are two threads try to change its state at the same time.

So if the bulb was initially OFF, you might expect that overall switching the bulb twice will

bring it back to the OFF state.

https://medium.com/@jhaprincet?source=post_page-----b0c3413fd28e--------------------------------
https://medium.com/@jhaprincet?source=post_page-----b0c3413fd28e--------------------------------
https://medium.com/@jhaprincet?source=post_page-----b0c3413fd28e--------------------------------
https://medium.com/@jhaprincet/synchronization-locks-conditional-variables-in-java-b0c3413fd28e
https://medium.com/@jhaprincet/synchronization-locks-conditional-variables-in-java-b0c3413fd28e
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fuser%2Fbf70386c4fb3&operation=register&redirect=https%3A%2F%2Fmedium.com%2F%40jhaprincet%2Fsynchronization-locks-conditional-variables-in-java-b0c3413fd28e&user=Prince+Jha&userId=bf70386c4fb3&source=post_page-bf70386c4fb3----b0c3413fd28e---------------------post_header-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2Fplans%3Fdimension%3Dpost_audio_button%26postId%3Db0c3413fd28e&operation=register&redirect=https%3A%2F%2Fmedium.com%2F%40jhaprincet%2Fsynchronization-locks-conditional-variables-in-java-b0c3413fd28e&source=-----b0c3413fd28e---------------------post_audio_button-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2Fplans%3Fdimension%3Dpost_audio_button%26postId%3Db0c3413fd28e&operation=register&redirect=https%3A%2F%2Fmedium.com%2F%40jhaprincet%2Fsynchronization-locks-conditional-variables-in-java-b0c3413fd28e&source=-----b0c3413fd28e---------------------post_audio_button-----------
https://medium.com/@jhaprincet/synchronization-locks-conditional-variables-in-java-b0c3413fd28e#7bc1
https://medium.com/@jhaprincet/synchronization-locks-conditional-variables-in-java-b0c3413fd28e#933b
https://medium.com/@jhaprincet/synchronization-locks-conditional-variables-in-java-b0c3413fd28e#636a
https://medium.com/@jhaprincet/synchronization-locks-conditional-variables-in-java-b0c3413fd28e#19a6
https://medium.com/@jhaprincet/synchronization-locks-conditional-variables-in-java-b0c3413fd28e#d20a
https://medium.com/@jhaprincet/synchronization-locks-conditional-variables-in-java-b0c3413fd28e#d1b6
https://medium.com/@jhaprincet/synchronization-locks-conditional-variables-in-java-b0c3413fd28e#ef1b
https://medium.com/@jhaprincet?source=post_page-----b0c3413fd28e--------------------------------

class Bulb {

 private static enum STATE {

 OFF,

 ON;

 }

 private STATE currentStateOfBulb = STATE.OFF;

 public void toggleState() {

 STATE before = currentStateOfBulb; //(*)

 STATE result = STATE.OFF;

 System.out.println("WHAT WILL HAPPEN HERE");

 if(before == STATE.OFF) {

 result = STATE.ON;

 }

 currentStateOfBulb = result; //(#)

 printState();

 }

 private void printState() {

 System.out.println("switch press by thread " +

 Thread.currentThread().getName() +

 " resulting state " + currentStateOfBulb

);

 }

}

public class MyClass {

 public static void main(String [] args) {

 Bulb bathroomBulb = new Bulb();

 Thread thread1 = new Thread(() -> {

 bathroomBulb.toggleState();

 });

 thread1.setName("PRINCE THREAD");

 Thread thread2 = new Thread(() -> {

 bathroomBulb.toggleState();

 });

 thread2.setName("TUSHAR THREAD");

 thread1.start();

 thread2.start();

 }

}

The output above ended up keeping the bulb ON even after two threads each tried switching it

once.

Expected Behaviour: One of the thread switches the bulb from OFF to ON, the other thread

switches the bulb from ON to OFF.

Expected Behaviour

Actual Behaviour: One possible scenario that might occur,

The first thread reads the state of the object to be OFF state at line (*), the first thread has not yet

executed the line (#) and hence the state of the bulb is OFF still.

The second thread meanwhile reads the state of the object to be OFF (since the object property

still holds the value OFF).

The two threads both end up writing the value ON to the object property. Hence even though two

switches occur, result appears to be equivalent to one switch.

Actual Behaviour:

Actual Behaviour

Synchronization: Multiple threads should access shared data in a way that leaves the object state

in a consistent state.

What went wrong in the program?

The second thread executed the line (*) before the first thread executes the line (#). i.e., the

second thread reads the state of the object before the first thread has written it.

To Fix the program we have to ensure that threads can exclusively access the object. ie., we need

to ensure that the thread T2 should not be allowed to operate on the object until thread T1 has

finished operating on the object.

Lock object:

A lock object can be used to synchronize access to executing certain lines of code. Only one

thread that has obtained the lock object will be allowed to execute certain lines of code whereas

the other threads that try to execute lines of code but that failed to acquire the lock object will get

blocked.

import java.util.concurrent.locks.ReentrantLock;

class Bulb {

 private ReentrantLock lockObj = new ReentrantLock();

 private static enum STATE {

 OFF,

 ON;

 }

 private STATE currentStateOfBulb = STATE.OFF;

 public void toggleState() {

 lockObj.lock(); //(***)

 try {

 STATE before = currentStateOfBulb;

 STATE result = STATE.OFF;

 System.out.println("WHAT WILL HAPPEN HERE");

 if(before == STATE.OFF) {

 result = STATE.ON;

 }

 currentStateOfBulb = result;

 printState();

 } finally {

 lockObj.unlock(); //(****)

 }

 }

 private void printState() {

 System.out.println("switch press by thread " +

 Thread.currentThread().getName() +

 " resulting state " + currentStateOfBulb

);

 }

}

public class MyClass {

 public static void main(String [] args) {

 Bulb bathroomBulb = new Bulb();

 Thread thread1 = new Thread(() -> {

 bathroomBulb.toggleState();

 });

 thread1.setName("PRINCE THREAD");

 Thread thread2 = new Thread(() -> {

 bathroomBulb.toggleState();

 });

 thread2.setName("TUSHAR THREAD");

 thread1.start();

 thread2.start();

 }

}

We have synchronized access to executing lines of code that by first locking on the Lock object.

Thread T1 acquires the lock and hence can continue executing those lines of the code that appear

after the lock() method call. On the other hand when Thread T2 tries to acquire the lock it will be

blocked since the lock is currently acquired by T1.

T1 has the lock and continues the execution. After updating the bulb state from OFF to ON, it

finally releases the Lock by calling the unlock() method.

The thread scheduler allows thread T2 to acquire the lock and hence the thread becomes

Runnable again. Once the thread T2 get scheduled for execution it continues the execution of the

lines following the lock() method call. T2 now has the lock with it. T2 reads the state of the bulb

to be ON. The thread T2 updates the bulb state from ON to OFF. The thread T2 releases its lock

by calling the unlock() method.

The section of the code whose execution is protected by using a lock object is called critical

section. There could be multiple critical sections protected by using the same lock. Only one

thread will be allowed inside the critical section. Other threads will be blocked till they get to

acquire the lock.

A few points to understand:

• Not every thread that calls the lock() will be granted access to the Lock object

immediately.

• When there are multiple threads waiting to acquire a Lock object in the Blocked state, the

thread that will acquire the Lock object once the Lock object is available is decided by

the thread scheduler.

• At the most one thread can own a Lock object at a point in time.

• The same Lock object should be used to synchronize those critical sections of code that

can change the state of an object.

• It is common to use one Lock to synchronize code written in multiple methods when they

operate on the same object.

Reentrant Locks:

A thread which already has acquired the Lock object by calling the lock() can keep calling the

lock() method to re-acquire the lock. In simple words, there is a counter associated with the Lock

object which counts the number of times the Lock is acquired by the thread that has it. An

unlock() should be called corresponding to each lock() call.

When the count corresponding to the Lock object reaches zero, the Lock is said to be released

and hence is available to other threads. One of these lucky threads decided by the scheduler will

get a chance to execute the critical section.

IMPORTANT NOTE:

1. Always call the unlock() corresponding to a lock() on the Lock object otherwise the lock

count will remain greater than one and thus all the other threads that are blocked will

never get a chance to execute the critical section and get blocked forever.

2. Sometimes a thread could terminate due to an exception inside the critical section, it is

essential to write a try-finally block around the critical section and ensure that the critical

section is inside a try block, and the lock is released in the finally block so that the lock is

released by the thread T and made available to the other blocked threads.

lockObj.lock(); // obtain the Lock lockObj, increment lock counter

try {

 // critical section

} finally {

 // irrespective of exception or no exception

 lockObj.unlock(); // decrement lock counter, release lock if counter == 0

}

Re-writing the bulb program to demonstrate the reentrant lock:

import java.util.concurrent.locks.ReentrantLock;

class Bulb {

 private ReentrantLock lockObj = new ReentrantLock();

 private static enum STATE {

 OFF,

 ON;

 }

 private STATE currentStateOfBulb = STATE.OFF;

 public void toggleState() {

 lockObj.lock(); //(***)

 try {

 STATE before = currentStateOfBulb;

 STATE result = STATE.OFF;

 System.out.println("WHAT WILL HAPPEN HERE");

 if(before == STATE.OFF) {

 result = STATE.ON;

 }

 currentStateOfBulb = result;

 printState();

 } finally {

 lockObj.unlock(); //(****)

 }

 }

 private void printState() {

 lockObj.lock(); //(***)

 try {

 System.out.println("switch press by thread " +

 Thread.currentThread().getName() +

 " resulting state " + currentStateOfBulb

);

 } finally {

 lockObj.unlock(); //(****)

 }

 }

}

public class MyClass {

 public static void main(String [] args) {

 Bulb bathroomBulb = new Bulb();

 Thread thread1 = new Thread(() -> {

 bathroomBulb.toggleState();

 });

 thread1.setName("PRINCE THREAD");

 Thread thread2 = new Thread(() -> {

 bathroomBulb.toggleState();

 });

 thread2.setName("TUSHAR THREAD");

 thread1.start();

 thread2.start();

 }

}

In the above program the thread T1 that obtain the Lock lockObj first in the toggleState method

will again acquire the same lock in the printState method. The thread T1 at this point in time has

acquired the lock two times. The critical section of printState prints the bulb state, after the

critical section of printState, the counter is decremented from two back to one when unlock() is

called. The lock is still with thread T1. The thread T1 completes execution of critical section of

toggleState method. The thread T1 releases the Lock lockObj when unlock() is called since the

counter decrements from one to zero.

The thread T2 which is still blocked and trying to acquire the lock in toggleState method will

now obtain the available Lock lockObj and so on.

To the readers who are curious to know why I did not lock twice in my earlier code, the reason is

that the method Bulb::printState is only called from inside the critical section of

Bulb::toggleState which is already synchronized and hence the method Bulb::toggleState will

only be executed by one thread which holds the lock.

Condition Variables:

Often a thread wants to perform certain operations only when a predicate/ condition holds true.

The thread cannot continue to perform meaningful computation until the condition becomes true.

We can use condition variables in such cases.

Example: Design a queue of fixed size N. The add operation on a queue needs to wait until there

is some empty space in the queue. On the other hand the remove operation should wait until

there is at least one element at the head of the queue.

import java.util.concurrent.locks.ReentrantLock;

import java.util.concurrent.locks.Condition;

import java.util.stream.*;

import java.util.*;

class MyQueue<T> {

 private static int EMPTY_QUEUE_SIZE = 0;

 private Queue<T> queue = new ArrayDeque<>();

 private int maxSize;

 private ReentrantLock lockObj = new ReentrantLock();

 private Condition queueContainsSpace = lockObj.newCondition();

 private Condition queueContainsElement = lockObj.newCondition();

 public MyQueue(int n) {

 maxSize = n;

 }

 public void add(T element) {

 lockObj.lock(); // lock the associate Lock

 try {

 while(queue.size() == maxSize) {

 System.out.println("ALL SLOTS FILLED. WAITING TO ADD");

 queueContainsSpace.await();

 // wait for notification

 // loop ensures that the queue has empty slots when loop

terminates

 }

 queue.add(element);

 queueContainsElement.signalAll();

 // signal when the queue state changes

 // threads waiting for notification will be woken and

 // made runnable and get blocked ...

 } catch(InterruptedException excetion) {

 Thread.currentThread().interrupt(); // set interrupted flag

 } finally {

 lockObj.unlock(); // unlock after critical section is complete

 }

 }

 public T remove() {

 T result = null;

 lockObj.lock();

 try {

 while(queue.size() == EMPTY_QUEUE_SIZE) {

 System.out.println("ALL SLOTS EMPTY. WAITING TO REMOVE");

 queueContainsElement.await();

 }

 result = queue.element();

 queue.remove();

 queueContainsSpace.signalAll();

 } catch(InterruptedException excetion) {

 Thread.currentThread().interrupt(); // set interrupted flag

 } finally {

 lockObj.unlock();

 }

 return result;

 }

}

public class MyClass {

 public static void main(String [] args) {

 MyQueue<Integer> myQueue = new MyQueue<>(5);

 Thread threadA = new Thread(() -> {

 Stream.

 of(10, 20, 30, 40, 50).

 forEach(myQueue::add);

 myQueue.add(200);

 myQueue.add(800);

 });

 Thread threadB = new Thread(() -> {

 Stream.

 iterate(0, i -> i < 7, i -> i + 1).

 forEach((i) -> {

 Integer value = myQueue.remove();

 System.out.println(value);

 });

 });

 threadA.start();

 threadB.start();

 }

}

The design of the custom queue is such that a queue has a Lock object and the Lock has two

condition variables associated with it.

The condition when the queue size is not full and hence can accommodate a new entry is

conceptually/logically represented using the queueContainsSpace condition variable.

The condition when the queue is not empty and hence an element is available in the queue for

removal is conceptually/logically represented using the queueContainsElement condition

variable.

Imagine the situation when a thread tries to add an element to the shared queue and the queue is

full, lets assume that the thread T1 obtains a lock and starts executing the critical section of add

method, the while loop condition is true since the queue is full and hence the await() method is

called on the condition variable. As per the problem statement the thread T1 should not continue

its execution since all the slots in the queue are filled.

But if the thread T1 keeps waiting for the condition to get better but at the same time holds the

lock then the situations can never get better.

For situations to become better the thread T1 needs to release the lock so that some other thread

can gain the lock and operate on the queue. The thread T1 should hope that the other thread that

gets a chance to operate on the queue makes situations better for it.

The await() method call on a condition variable makes the thread T1 go to a wait set and changes

the thread state from Runnable to Waiting. The thread T1 releases the lock before going to the

wait set. The thread T1 does it because the thread T1 wants to ensure that its execution should

only continue once the condition is true. The other threads will now compete for the available

lock and one of the thread will obtain the lock and continue executing its critical section. The

thread T1 has put all its faith in the other threads and is waiting in the wait set. Once the other

thread brings the object into a state that could be beneficial to remaining threads it should

notifyAll the waiting threads. The only way that thread T1 can come out of the wait set is when it

receives notification on the condition variable which led to its waiting state.

Once the thread T1 receives notification. It is made Runnable and then gets blocked when it tries

to acquire the Lock. Whenever the lock is available and it obtains the lock it continues the

execution of the next instruction from the instruction due to which it went into the wait set.

A Lock object could have multiple condition variables associated with it. The general form of

using the condition variable is

lockObj.lock(); // increment lock count, critical section ahead

try {

 while(codition is not ok to proceed) {

 conditionVariable.await();

 // release lock

 // go to wait set

 // wait for notification from other thread hoping codition will be

better

 }

 // logic of critical section

} catch(InterruptedException error) {

 // exception when interrupted inactive

} finally {

 lockObj.unlock(); //decrement lock counter, release if count == 0

}

Continuing our assumed example, the thread T1 cannot proceed to add elements since queue is

full and hence it waits until the queue has some space. Note that the only way the queue can have

space at this point in time by allowing the removal of elements. So the thread T1 releases its lock

and goes to wait set. It waits for notification on the queueContainsSpace condition variable.

The released lock can be obtained by another thread that could remove an element from the

queue, when the remove method executes, queueContainsSpace.signalAll(); line will actually

cause all the threads waiting in the wait set due to queueContainsSpace condition variable to be

removed from the wait set and will make them Runnable and then Blocked. The thread that

sends notification will continue to keep the lock. These blocked threads try to compete for Lock

object since these threads need to execute the critical section. When the Lock is available one of

them gets the lock and continues execution whereas others that do not get the lock will remain in

the Blocked state.

There is also a signal method that can be called on a condition variable. The signal method will

randomly pick exactly one thread out of all the threads that are waiting in the wait set on the

condition variable. If the signalled thread still cannot proceed it will release the lock and wait in

the wait-set. If the thread that obtains the lock does not send notification on the same condition

variable, then all the threads waiting in the wait-set will never get a chance of execute again.

Again continuing the assumed example, the thread T1 waits for some other thread to make space

in the queue by removing an element. It waits for the notification which it receives when

signalAll is called. It can then continue to add an element since now there is space in the queue.

Output Explanation:

threadA adds five elements to the queue. The queue gets full. Adding the sixth element is not

allowed since max size is five, hence the threadA releases the lock and waits in the wait set for

notification till queueContainsSpace. The threadB starts removing elements from the queue.

Whenever threadB removes elements from queue the queueContainsSpace and hence the

notification is sent to all threads waiting on that condition variable. The threadA receives the

notification and hence it is made Runnable and gets blocked since it tries to acquire the lock. The

threadB continues its execution and removes all the 5 elements. When threadB tries removing

the 6th element, the queue is empty so now threadB releases the lock and waits in the wait set

until queueContainsElement. threadA obtains the lock and continues the execution and adds two

more elements. When threadA adds elements to the queue the queueContainsElement and hence

notification is sent to all the threads that are waiting on that condition variable. threadB receives

the notification and is made Runnable and is blocked when it tries to acquire the lock. threadA

completes adding two elements and releases the lock. threadB acquires the lock and removes two

elements.

synchronized keyword in Java:

The methods of a class can be marked with the synchronized keyword indicating that the method

body is a critical section.

Every Java object has an associated Lock object and that Lock object has an associated condition

variable.

class A {

 public synchronized void method() {

 // code in critical section...

 }

}

The above code is same as

class A {

 private ReentrantLock intrinsicLockObj = new ReentrantLock();

 public void method() {

 intrinsicLockObj.lock(); // only enter the critical section once you

own a lock

 try {

 // code in the critical section

 } finally {

 intrinsicLockObj.unlock();

 }

 }

}

In other words, all the methods that are synchronized can only be executed by a thread once the

intrinsic lock of the object is acquired by that thread.

If there are several methods in the class marked with the synchronized keyword, then only that

one thread which gains the lock can execute these methods by acquiring the intrinsic reentrant

lock, all the other threads are blocked until they get the lock and get a chance to execute.

class Address {

 private String pinCode = "";

 private String streetName = "";

 private String areaName = "";

 public synchronized void changeAddress(String pin, String street, String

area) {

 changePinCode(pin);

 changeStreetName(street);

 changeAreaName(area);

 }

 private synchronized void changePinCode(String otherPin) {

 pinCode = otherPin;

 }

 private synchronized void changeStreetName(String otherStreet) {

 streetName = otherStreet;

 }

 private synchronized void changeAreaName(String otherArea) {

 areaName = otherArea;

 }

}

Can be considered to be same as

import java.util.concurrent.locks.ReentrantLock;

import java.util.concurrent.locks.Condition;

class Address {

 private ReentrantLock intrinsicLockObj = new ReentrantLock();

 private String pinCode = "";

 private String streetName = "";

 private String areaName = "";

 public void changeAddress(String pin, String street, String area) {

 intrinsicLockObj.lock();

 try {

 changePinCode(pin);

 changeStreetName(street);

 changeAreaName(area);

 } finally {

 intrinsicLockObj.unlock();

 }

 }

 private void changePinCode(String otherPin) {

 intrinsicLockObj.lock();

 try {

 pinCode = otherPin;

 } finally {

 intrinsicLockObj.unlock();

 }

 }

 private void changeStreetName(String otherStreet) {

 intrinsicLockObj.lock();

 try {

 streetName = otherStreet;

 } finally {

 intrinsicLockObj.unlock();

 }

 }

 private void changeAreaName(String otherArea) {

 intrinsicLockObj.lock();

 try {

 areaName = otherArea;

 } finally {

 intrinsicLockObj.unlock();

 }

 }

}

synchronized block:

Using synchronized keyword to protect critical section by locking on a Java object. A block of

statements can be constituted to be a critical section of code and can be protected by Locking on

a Java object. Internally it means that the reentrant lock associated with the Java object will be

used to synchronize execution of lines of code. The block of statements is called a synchronized

block.

class A {

 private int x;

 private int y;

 public void changeX(int otherVal) {

 System.out.println("Outside Critical Section");

 synchronized(this) {

 System.out.println("Other val " + otherVal);

 this.x = otherVal;

 }

 System.out.println("Outside the synchronized block");

 }

}

The above synchronized block is equivalent to the following

import java.util.concurrent.locks.ReentrantLock;

class A {

 private int x;

 private int y;

 private ReentrantLock intrinsicLockObj = new ReentrantLock();

 public void changeX(int otherVal) {

 System.out.println("Outside Critical Section");

 this.intrinsicLockObj.lock(); // lock the intrinsic associated lock

 try {

 System.out.println("Other val " + otherVal);

 this.x = otherVal;

 } finally {

 this.intrinsicLockObj.unlock();

 }

 System.out.println("Outside the synchronized block");

 }

}

The associate condition variable:

The intrinsic condition variable associated to the intrinsic lock associated to a Java object can be

used by a thread to wait on a notification, notify one of the waiting threads on that condition

variable, notifyAll the waiting threads on the intrinsic condition variable.

These methods are equivalent to the await(), signal(), signalAll() methods that we have seen

earlier with the condition variable.

class Bank {

 private int [] accountBalance;

 Bank(int numberOfAccounts) {

 accountBalance = new int [numberOfAccounts];

 }

 public synchronized void transferAmount(int fromAccountNumber, int

toAccountNumber, int amount) {

 try {

 while(accountBalance[fromAccountNumber] < amount) {

 wait();

 // release the lock

 // wait in a wait set for notification

 }

 accountBalance[toAccountNumber] += amount;

 accountBalance[fromAccountNumber] -= amount;

 notifyAll();

 // since account balance changed, situations could get better for

threads

 // notify threads that are waiting for notification

 } catch(InterruptedException exception) {

 Thread.currentThread().interrupt(); // set interrupt flag

 }

 }

}

The above code is similar to

import java.util.concurrent.locks.ReentrantLock;

import java.util.concurrent.locks.Condition;

class Bank {

 private ReentrantLock intrinsicLockObj = new ReentrantLock();

 private Condition intrinsicCondition = intrinsicLockObj.newCondition();

 private int [] accountBalance;

 Bank(int numberOfAccounts) {

 accountBalance = new int [numberOfAccounts];

 }

 public void transferAmount(int fromAccountNumber, int toAccountNumber,

int amount) {

 intrinsicLockObj.lock(); // obtain the lock

 try {

 while(accountBalance[fromAccountNumber] < amount) {

 intrinsicCondition.await();

 // release the lock

 // wait in a wait set for notification from other thread

 }

 accountBalance[toAccountNumber] += amount;

 accountBalance[fromAccountNumber] -= amount;

 intrinsicCondition.signalAll();

 // since account balance changed, situations could get better

for threads

 // notify threads that are waiting for notification

 // notified threads will be made Runnable and then get

Blocked

 } catch(InterruptedException exception) {

 Thread.currentThread().interrupt(); // set interrupt flag

 } finally {

 intrinsicLockObj.unlock(); // unlock after critical section

completes

 }

 }

}

The working of the above code is such that a thread T that wants to transfer amount from one

bank account to another bank account should first obtain the lock on the Bank object. (or rather

the intrinsic lock associated with the bank object). It should get suspended and wait in a wait set

when the source bank account does not have enough funds. It is necessary that the condition

variable wait() is inside a while statement since we want to ensure that when thread wakes up it

again attempts to ensure that the source bank account has the sufficient amount or not. When a

thread gets suspended due to insufficient amount, it releases the lock and goes to the waiting

state. The thread scheduler can pick one thread from the other threads that are blocked and are

competing for the lock to execute a critical section protected by the same lock. Whenever the

account balance changes, a notification will be sent to all the threads that are waiting in the wait

set using the notifyAll() and they will all wake up and try to obtain the lock and they will all get

Blocked competing for the lock. Once one of these threads gets the lock (whenever the lock

becomes available) it will resume the execution of code exactly from the next instruction from

the instruction whose execution caused it to go to the waiting state.

Synchronizing static methods:

We know that the this context is not available inside the static methods of a class. So how do we

protect critical section of code from being executed simultaneously by multiple threads that is

present inside static methods.

The idea is that the static methods of a class are defined on the type and hence it makes sense to

use the Class object of that type for the sake of locking.

synchronized instance method lock on the intrinsic lock associated with the this context object.

synchronized static methods lock on the intrinsic lock associated with the Class<T> object where

T is the type on which static method is defined.

class A {

 public static synchronized void method() {

 // method definition

 }

}

is same as

class A {

 public static void method() {

 final Class<A> classObj = A.class;

 synchronized(classObj) {

 // method definition

 }

 }

}

which is same as locking on the intrinsic lock associated with the classObj.

Instead of synchronizing the entire method it is also possible to synchronize only a block of

statements, such blocks are called synchronized blocks.

class X {

 public static void method() {

 System.out.println("Welcome, Non synchronized line");

 System.out.println("Critical section ahead");

 synchronized(X.class) {

 // lines of code in critical section, thread should acquire lock

 }

 }

}

Example of synchronized static block:

class Singleton {

 private volatile static Singleton instance = null;

 // private constructor to avoid calling new from outside the class

 // declare the fields that you need in your Signleton/subclass of

Singleton

 private Singleton() {

 // initialize the fields of the object

 }

 public static Singleton getInstance() {

 if(instance == null) {

 synchronized(Singleton.class) {

 if(instance == null) {

 instance = new Singleton();

 }

 }

 }

 return instance;

 }

}

