
Lab 4 — Multithreading

CS 205

Lab objectives:

• Create multithreaded code.

• Correct synchronization issues within a multithreaded program with locks.

1. You will start by using multiple threads.

As you progress through these steps, don’t delete code from previous steps.

Instead, comment previous code out. For example, in step 2b below, you use a ReentrantLock
that you replace in step 2c. Comment-out the ReentrantLock code that you no longer need.

(a) Download and import the lab4Starter project into Eclipse. Take a look at the project’s
printPrimes method. What does the method do? (Note: n.isProbablePrime(100)

returns true if n is a prime, with error probability < 2−100. Assume for now that means
that n is certainly a prime.)

(b) Take a look at the method that executes two threads, and run the program. What
happens? How can you tell that the two threads ran concurrently? Does the main
thread finish executing before the other two threads?

(c) Now we want to know how many primes are in a given interval instead of printing them
to System.out. We need to use a Callable since a Runnable can’t return a value. Make
a function countPrimes that returns a Callable<Long>. Make two callables

Callable<Long> c1 = countPrimes(new BigInteger("1000000000000000"),

500_000);

Callable<Long> c2 = countPrimes(new BigInteger("2000000000000000"),

500_000);

Submit them both to the same ExecutorService as in the preceding example. You’ll
get two Future<Long> values. You can access these values by

System.out.println(f1.get());

System.out.println(f2.get());

before calling

service.shutdown();

(d) Run the program. What does it print? Run it again. Does it print the same thing?
The isProbablePrime method sounds as if it was guessing, but it is actually perfectly
deterministic. For a given n, the call n.isProbablePrime(100) will always give the
same result. It is just that the result may be wrong. The chance for that is 2−100 or
about 10−30. The probability of you being struck by lightning in a given year is about
10−6. The probability of five of us being struck by lightning in the same year is about

1



10−30. If that’s what keeps you up at night, then you should definitely worry about
n.isProbablePrime(100) giving you the wrong answer.

(e) Let’s find out if running the two tasks in parallel does any good. Add these calls around
the calls to service.submit and fn.get

long start = System.currentTimeMillis();

// service.submit and f1.get and f2.get calls

long end = System.currentTimeMillis();

System.out.println("Run time in ms.: " + (end - start));

Run the program and write down the number of milliseconds. Then change

Executors.newFixedThreadPool(2);

to

Executors.newFixedThreadPool(1);

which means that only one thread is available. Run the program again. You should
notice a delay between the printouts of the two counts. Why was there a delay? Was
there a difference in the run times? If so, why?

Set the number of threads available to 3 and run the program again. Comment on any
differences, and the reasons, compared to having 2 threads available.

Set the number of threads available back to 2.

2. Now let’s compute the count differently.

(a) We’ll increment a shared counter. Add a field

private long nonprime = 0;

In the countPrimes method, increment nonprime when a number isn’t a prime. After
printing the counts of primes, add a call

System.out.println(nonprime);

Run the program a few times. What results do you get? Which values are the same,
and which are different in each run?

(b) As you can see, incrementing a counter from two threads doesn’t work reliably — in
other words, it doesn’t work. Use a ReentrantLock to make it work.

(c) Objects contain their own built-in locks. Make a SyncedCounter class with synchro-
nized methods increment and get. Remove the lock from the previous step and make
nonprime into an instance of your Counter class. Verify that your program works.

3. Now we’ll look at an example of the famous Producer/Consumer problem.

(a) Create a method that places primes into a queue:

private Runnable producePrimes(BigInteger start, long length,

BlockingQueue<BigInteger> queue)

2



You will want to use put, not add, for placing items into the queue so that the thread
will wait if the queue is full. Add a method

private Runnable consumePrimes(BlockingQueue<BigInteger> queue, ...);

that removes primes from the queue and prints those that have at most three distinct
digits. You will want to use the method take to remove items from the queue so that
the thread will wait if there are no items to remove. There is a method, distinct,
in the starter project for finding and returning all distinct characters in a string. Use
this method as part of the process of determining those primes that have at most three
distinct digits.

Instantiate a private ArrayBlockingQueue of capacity 1000. Change the
newFixedThreadPool call to have 3 threads. Add the three runnables:

... producePrimes(new BigInteger("1000000000000000"), 500_000, queue);

... producePrimes(new BigInteger("2000000000000000"), 500_000, queue);

... consumePrimes(queue, ...);

(b) How does the consumer know when it is done? Come up with some mechanism that
works.

Export your lab into a ZIP archive and submit it in Canvas.

3


