Lab 5 — Multithreading

CS 205

Lab objectives:

e Correct synchronization issues within a multithreaded program with Locks

e Program a multithreaded solution to a problem

1. You will start by debugging a program with a synchronization problem.

(a)
(b)

()

In your pair, download and import the lab5Starter project into Eclipse. (Note that this
one project archive contains both the Counter project and the Mandelbrot project.)

Open the Counter project and examine the code which creates a Counter object and
two Accessors which each increment the Counter ten times. Try running the program,
which may take up to a minute, and check out the output. Run the application again
to see if you get the same result.

Use Lock objects to fix the program to produce the expected (and correct) output. Only
lock as much code as necessary in order to get the correct output, so that you don’t limit
the threads’ parallelism.

2. You will now parallelize a Java program which produces a Mandelbrot set image. Open the
Mandelbrot project. Run the program and study the code.

(a)

You will parallelize the program by creating threads, each of which will color the pixels
of contiguous rows of the BufferedImage I. The threads split up the work done by the
outer loop of the Mandelbrot class’ constructor. For example, for an image with 80 rows
and eight available threads, the first thread handles the first 10 rows, the second thread
the next 10 rows, etc.

Today’s CPUs have multiple cores, each of which can efficiently run one thread. Your
program should create one thread for each core available on any computer it runs on.
The method call

Runtime.getRuntime () .availableProcessors()

can be used to determine the number of available cores at runtime.

The image that you’ll be creating has 819 rows. If you only have two cores available,
the first thread is responsible for 409 rows, while the second thread is responsible for
410 rows. Keep this in mind when you write the portion of your program that allocates
blocks of rows to threads.

Your main thread should create the child worker threads, start the threads, and then
must wait for all of the worker threads to complete, before exiting. You’ll find it helpful
to use an array of threads and the join() method that was used in the Driver class of
the Counter program.



(d) Asmentioned in the program’s comments, don’t assume that a BufferedImage’s setRGB ()
method is thread-safe. This means that only one thread can call it at a time.

Add Javadoc comments to record the members of your team in the Class file containing your main ()
method and also to document the code that you write for the lab. Export your lab into a ZIP
archive and submit it in GoucherLearn.



