
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 1

www.nand2tetris.org

Building a Modern Computer From First Principles

Machine Language

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 2

Where we are at:

Assembler

Chapter 6

H.L. Language

&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5

Gate Logic

Chapters 1 - 3 Electrical

Engineering
Physics

Virtual

Machine

abstract interface

Software

hierarchy

Assembly

Language

abstract interface

Hardware

hierarchy

Machine

Language

abstract interface

Hardware

Platform

abstract interface

Chips &

Logic Gates

abstract interface

Human

Thought

Abstract design

Chapters 9, 12

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 3

Machine language

Abstraction – implementation duality:

� Machine language (= instruction set) can be viewed as a programmer-
oriented abstraction of the hardware platform

� The hardware platform can be viewed as a physical means for realizing
the machine language abstraction

Another duality:

� Binary version

� Symbolic version

Loose definition:

� Machine language = an agreed-upon formalism for manipulating
a memory using a processor and a set of registers

� Same spirit but different syntax across different hardware platforms.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 4

Binary and symbolic notation

Evolution:

� Physical coding

� Symbolic documentation

� Symbolic coding

� Translation and execution

� Requires a translator.

1010 0001 0010 1011 ADD R1, R2, R3

Jacquard loom

(1801)

Augusta Ada King,

Countess of Lovelace

(1815-1852)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 5

Typical machine language commands (a small sample)

// In what follows R1,R2,R3 are registers, PC is program counter,

// and addr is some value.

ADD R1,R2,R3 // R1 ���� R2 + R3

ADDI R1,R2,addr // R1 ���� R2 + addr

AND R1,R1,R2 // R1 ���� R1 and R2 (bit-wise)

JMP addr // PC ���� addr

JEQ R1,R2,addr // IF R1 == R2 THEN PC ���� addr ELSE PC++

LOAD R1, addr // R1 ���� RAM[addr]

STORE R1, addr // RAM[addr] ���� R1

NOP // Do nothing

// Etc. – some 50-300 command variants

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 6

The Hack computer

A 16-bit machine consisting of the following elements:

Data memory: RAM – an addressable sequence of registers

Instruction memory: ROM – an addressable sequence of registers

Registers: D, A, M, where M stands for RAM[A]

Processing: ALU, capable of computing various functions

Program counter: PC, holding an address

Control: The ROM is loaded with a sequence of 16-bit instructions, one per memory
location, beginning at address 0. Fetch-execute cycle: later

Instruction set: Two instructions: A-instruction, C-instruction.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 7

The A-instruction

@value // A ���� value

Where value is either a number or a symbol referring to some number.

Used for:

� Entering a constant value
(A = value) @17 // A = 17

D = A // D = 17

Coding example:

@17 // A = 17

D = M // D = RAM[17]

� Selecting a RAM location
(register = RAM[A])

@17 // A = 17

JMP // fetch the instruction

// stored in ROM[17]

� Selecting a ROM location
(PC = A)

Later

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 8

The C-instruction (first approximation)

Exercise: Implement the following tasks
using Hack commands:

� Set D to A-1

� Set both A and D to A + 1

� Set D to 19

� Set both A and D to A + D

� Set RAM[5034] to D - 1

� Set RAM[53] to 171

� Add 1 to RAM[7],

and store the result in D.

dest = x + y

dest = x - y

dest = x

dest = 0

dest = 1

dest = -1

x = {A, D, M}

y = {A, D, M , 1}

dest = {A, D, M, MD, A, AM, AD, AMD, null}

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 9

The C-instruction (first approximation)

j 3012

sum 4500

q 3812

arr 20561

Symbol table:

(All symbols and values
are arbitrary examples)

Exercise: Implement the following tasks
using Hack commands:

� sum = 0

� j = j + 1

� q = sum + 12 – j

� arr[3] = -1

� arr[j] = 0

� arr[j] = 17

� etc.

dest = x + y

dest = x - y

dest = x

dest = 0

dest = 1

dest = -1

x = {A, D, M}

y = {A, D, M , 1}

dest = {A, D, M, MD, A, AM, AD, AMD, null}

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 10

Control (focus on the yellow chips only)

A
L

U

M
u
x

D

A/M

a-bit

D register

A register
A

MRAM

(selected

register)

ROM

(selected

register)

PC
Instruction

In the Hack architecture:

� ROM = instruction memory

� Program = sequence of 16-bit
numbers, starting at
ROM[0]

� Current instruction = ROM[PC]

� To select instruction n from the ROM,
we set A to n, using the instruction @n

address

input

address

input

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 11

Coding examples (practice)

Exercise: Implement the following
tasks using Hack commands:

� goto 50

� if D==0 goto 112

� if D<9 goto 507

� if RAM[12] > 0 goto 50

� if sum>0 goto END

� if x[i]<=0 goto NEXT.
sum 2200

x 4000

i 6151

END 50

NEXT 120

Symbol table:

(All symbols and
values in are
arbitrary examples)

In the command dest = comp; jump, the jump materialzes

Hack commands:

A-command: @value // set A to value

C-command: dest = comp ; jump // dest = and ;jump

// are optional

Where:

comp = 0 , 1 , -1 , D , A , !D , !A , -D , -A , D+1 ,

A+1 , D-1, A-1 , D+A , D-A , A-D , D&A ,

D|A , M , !M , -M ,M+1, M-1 , D+M , D-M ,

M-D , D&M , D|M

dest = M , D , MD , A , AM , AD , AMD, or null

jump = JGT , JEQ , JGE , JLT , JNE , JLE , JMP, or null

In the command dest = comp; jump, the jump materialzes
if (comp jump 0) is true. For example, in D=D+1,JLT,
we jump if D+1 < 0.

Hack convention:

� True is represented by -1

� False is represented by 0

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 12

if condition {

code block 1

}

else {

code block 2

}

code block 3

High level:

D ���� condition

@IF_FALSE

D;J_NotConditionRelation

code block 1

@END

0;JMP

(IF_FALSE)

code block 2

(END)

code block 3

Hack:

IF logic – Hack style

Hack convention:

� True is represented by -1

� False is represented by 0

� Re-write the condition so
that 0 is on one side and use
the Not of the condition’s
relation.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 13

WHILE logic – Hack style

while condition {

code block 1

}

Code block 2

High level:

(LOOP)

D ���� condition

@END

D;J_NotConditionRelation

code block 1

@LOOP

0;JMP

(END)

code block 2

Hack:

Hack convention:

� True is represented by -1

� False is represented by 0

� Re-write the condition so
that 0 is on one side and use
the Not of the condition’s
relation

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 14

Side note (focus on the yellow chip parts only)

A
L

U

M
u
x

D

A/M

a-bit

D register

A register
A

MRAM

(selected

register)

ROM

(selected

register)

PC
Instruction

address

input

address

input

In the Hack architecture, the A register
addresses both the RAM and the ROM,
simultaneously. Therefore:

� Command pairs like @addr followed by
D=M;someJumpDirective make no sense

� Best practice: in well-written Hack
programs, a C-instruction should contain

� either a reference to M, or

� a jump directive,

� but not both.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 15

Complete program example

// Adds 1+...+100.

into i = 1;

into sum = 0;

while (i <= 100){

sum += i;

i++;

}

C language code:

100

END

LOOP

// Adds 1+...+100.

@i // i refers to some RAM location

M=1 // i=1

@sum // sum refers to some RAM location

M=0 // sum=0

(LOOP)

@i

D=M // D = i

@100

D=D-A // D = i - 100

@END

D;JGT // If (i-100) > 0 goto END

@i

D=M // D = i

@sum

M=D+M // sum += i

@i

M=M+1 // i++

@LOOP

0;JMP // Goto LOOP

(END)

@END

0;JMP // Infinite loop

Hack assembly code:

Demo

CPU emulator

Hack assembly convention:

� Variables: lower-case

� Labels: upper-case

� Commands: upper-case

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 16

Symbols in Hack assembly programs

Symbols created by Hack programmers and code generators:

� Label symbols: Used to label destinations of goto commands. Declared by
the pseudo command (XXX). This directive defines the symbol XXX to
refer to the instruction memory location holding the next command in
the program (within the program, XXX is called “label”)

� Variable symbols: Any user-defined symbol xxx appearing in an assembly
program that is not defined elsewhere using the (xxx) directive is
treated as a variable, and is “automatically” assigned a unique RAM
address, starting at RAM address 16

� By convention, Hack programmers use lower-case and upper-case letters
for variable names and labels, respectively.

Predefined symbols:

� I/O pointers: The symbols SCREEN and KBD are “automatically”
predefined to refer to RAM addresses 16384 and 24576, respectively
(base addresses of the Hack platform’s screen and keyboard memory
maps)

� Virtual registers: covered in future lectures.

� VM control registers: covered in future lectures.

// Typical symbolic

// Hack code, meaning

// not important

@R0

D=M

@INFINITE_LOOP

D;JLE

@counter

M=D

@SCREEN

D=A

@addr

M=D

(LOOP)

@addr

A=M

M=-1

@addr

D=M

@32

D=D+A

@addr

M=D

@counter

MD=M-1

@LOOP

D;JGT

(INFINITE_LOOP)

@INFINITE_LOOP

0;JMP

Q: Who does all the “automatic” assignments of symbols to RAM addresses?

A: The assembler, which is the program that translates symbolic Hack
programs into binary Hack program. As part of the translation process,
the symbols are resolved to RAM addresses. (more about this in future lectures)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 4: Machine Language slide 17

Perspective

� Hack is a simple machine language

� User friendly syntax: D=D+A instead of ADD D,D,A

� Hack is a “½-address machine”: any operation that needs to operate on the
RAM must be specified using two commands: an A-command to address the
RAM, and a subsequent C-command to operate on it

� A Macro-language can be easily developed

� A Hack assembler is needed and will be discusses and developed later in
the course.

