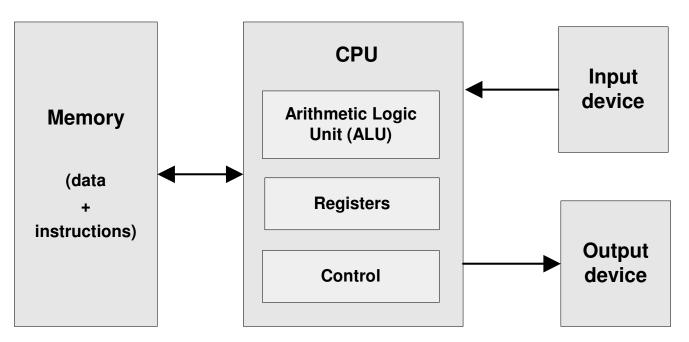

Computer Architecture

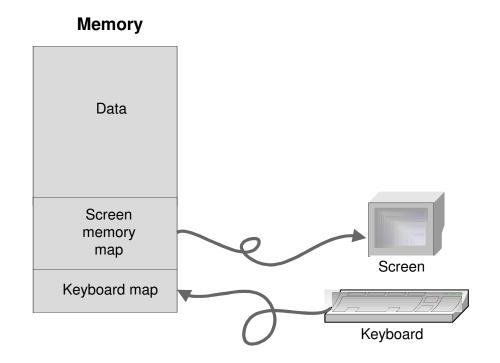

Building a Modern Computer From First Principles

www.nand2tetris.org

Von Neumann machine (circa 1940)

Processing logic: the instruction cycle

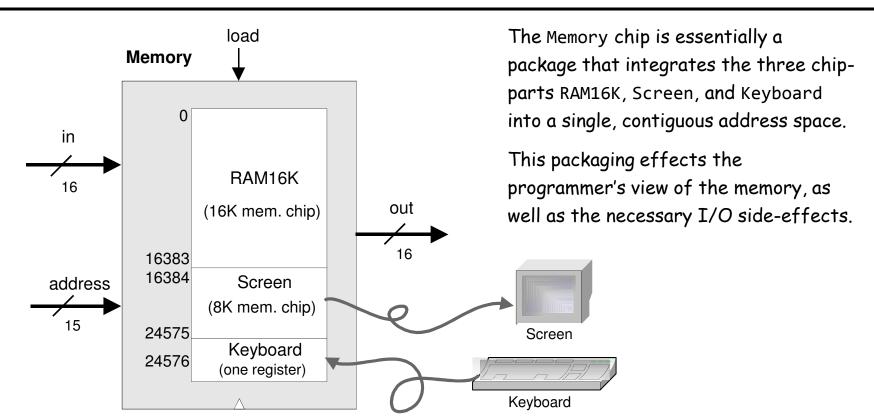
Executing the *current instruction* involves one or more of the following micro-tasks:


- □ Fetch the next instruction
- Decode the instruction
- □ Read source operands
- Perform ALU operation
- Store the result

The Hack computer

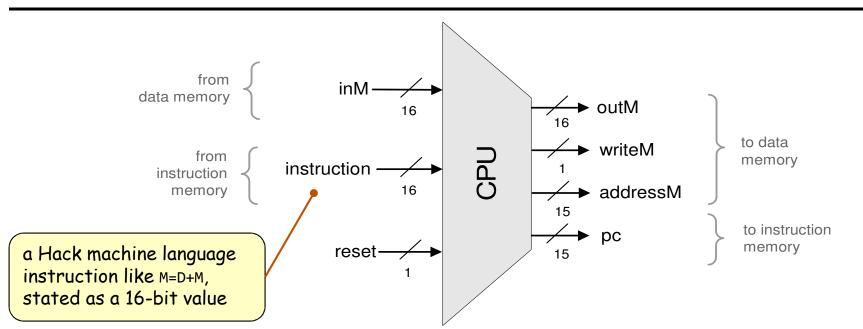
- A 16-bit Von Neumann platform
- The instruction memory and the data memory are physically separate
- Screen: 512 columns by 256 rows, black and white
- Keyboard: standard
- Designed to execute programs written in the Hack machine language
- Can be easily built from the chip-set that we built so far in the course

Main parts of the Hack computer:


- Instruction memory (ROM)
- □ Memory (RAM):
 - Data memory
 - Screen (memory map)
 - Keyboard (memory map)
- □ CPU
- Computer (the logic that holds everything together).

Using the memory:

- To record or recall values (e.g. variables, objects, arrays), use the first 16K words of the memory
- □ To write to the screen (or read the screen), use the next 8K words of the memory
- □ To read which key is currently pressed, use the next word of the memory.


Memory: physical implementation

Access logic:

- □ Access to any address from 0 to 16,383 results in accessing the RAM16K chip-part
- Access to any address from 16,384 to 24,575 results in accessing the Screen chip-part
- Access to address 24,576 results in accessing the keyboard chip-part
- Access to any other address is invalid.

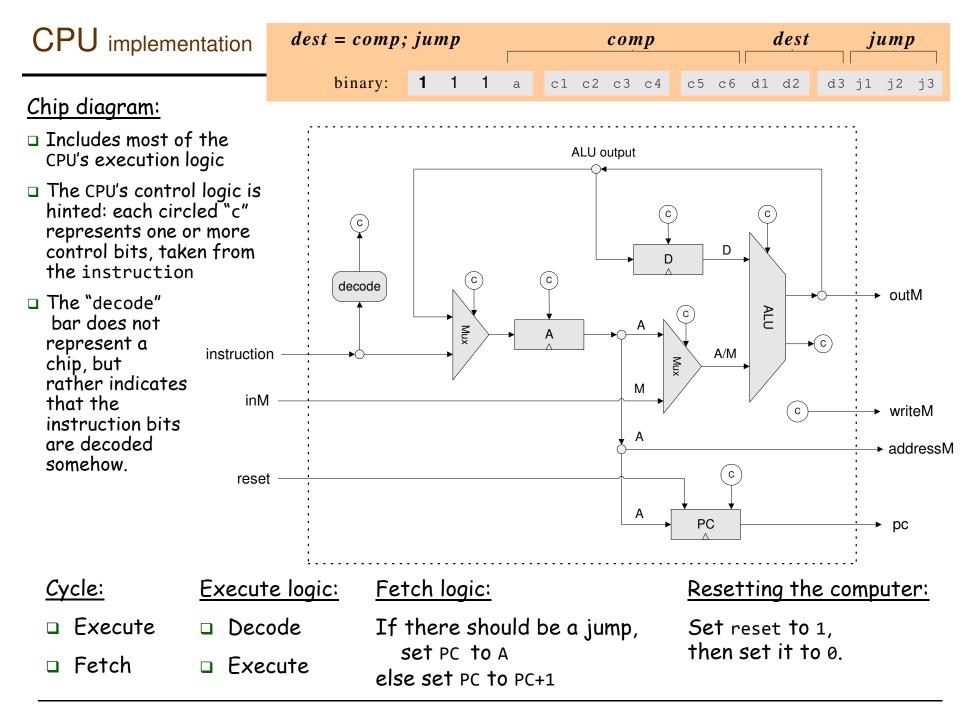
CPU

<u>CPU internal components (invisible in this chip diagram)</u>: ALU and 3 registers: A, D, PC

CPU fetch logic:

Recall that:

1. the instruction may include a jump directive (expressed as non-zero jump bits)


2. the ALU emits two control bits, indicating if the ALU output is zero or less than zero

<u>If reset==0:</u> the CPU uses this information (the jump bits and the ALU control bits) as follows: If there should be a jump, the PC is set to the value of A; else, PC is set to PC+1 <u>If reset==1:</u> the PC is set to 0. (restarting the computer)

dest = comp;	comp								dest			jump				
binary:	1	1	1	a	c1	с2	с3	с4	с5	с6	d1	d2	d 3	j1	j2	ј3

(when a=0)	hen a=0)			(when a=1)	d1	d2	d3	Mnemonic	Destination	Destination (where to store the computed value)						
comp	c1	c2	c3	c4	с5	С6	comp	0	0	0	null	The value is	s not stored an	ywhere		
0	1	0	1	0	1	0		Ο	Ο	1	м	Memory[A] (memory register addressed by A)				
1	1	1	1	1	1	1		Ο	1	ο	D	D register				
-1	1	1	1	0	1	0		ο	1	1	MD	Memory[A] and D register				
D	0	0	1	1	0	Ο		_								
A	1	1	0	0	0	Ο	м	1 0 0 Å			A	A register				
! D	o	ο	1	1	0	1		1	1 0 1 AM A register and Memory[A]							
٨!	1	1	0	0	0	1	! M	1	1	0	AD	A register and D register				
- D	0	0	1	1	1	1		1	1	1	AMD	A register, Memory[A], and D register				
-A	1	1	0	0	1	1	- M				I	1 –				
D+1	o	1	1	1	1	1			j1 j2		j3	Mnemonic	Effect			
A+1	1	1	ο	1	1	1	M+1	(<i>out</i> <0		0)	(out = 0)	(out > 0)	TATIENTOULIC			
D-1	o	ο	1	1	1	ο		0			Ο	Ο	null	No jump		
A-1	1	1	о	ο	1	о	M-1	0			Ο	1	JGT	If <i>out</i> > 0 jump		
D+A	o	ο	о	ο	1	ο	D+M	0			1	Ο	JEQ	If <i>out</i> = 0 jump		
D-A	o	1	ο	ο	1	1	D-M		0		1	1	JGE	If <i>out</i> ≥0 jump		
A-D	o	ο	ο	1	1	1	M-D		1		Ο	Ο	JLT	If <i>out</i> <0 jump		
DEA	0	0	0	0	0	0	Dem		1		Ο	1	JNE	If <i>out</i> ≠ 0 jump		
DIA	o	1	o	1	ō	1	DIM		1		1	Ο	JLE	If <i>out</i> ≤0 jump		
21		-	-	-	-	-	- ,		1		1	1	JMP	Jump		

Elements of Computing Systems, Nisan & Schocken, MIT Press, <u>www.nand2tetris.org</u>, Chapter 5: Computer Architecture

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 5: Computer Architecture

- Pipelining
- Caching
- More I/O units
- Special-purpose processors (I/O, graphics, communications, ...)
- Multi-core / parallelism; GPUs
- Efficiency
- Energy consumption considerations
- And more ...

Perspective: some issues we haven't discussed (among many)

- CISC / RISC (hardware / software trade-off)
- Hardware diversity: desktop, laptop, mobile, game machines, ...
- General-purpose vs. embedded computers